MP2, DFT and ab initio calculations on thioxanthone.

Spectrochim Acta A Mol Biomol Spectrosc

Department of Chemistry, Faculty of Science, Yasouj University, Yasouj 75918-74831, Iran.

Published: November 2011

Density functional theory (DFT), HF and MP2 calculations have been carried out to investigate thioxanthone molecule using the standard 6-31+G(d,p) basis set. The results of MP2 calculations show a butterfly structure for thioxanthone. The calculated results show that the predicted geometry can well reproduce the structural parameters. The predicted vibrational frequencies were assigned and compared with experimental IR spectra. A good harmony between theory and experiment is found. The theoretical electronic absorption spectra have been calculated using CIS method. (13)C and (1)H NMR of the title compound have been calculated by means of B3LYP density functional method with 6-31+G(d,p) basis set. The comparison of the experimental and the theoretical results indicate that density functional B3LYP method is able to provide satisfactory results for predicting NMR properties.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2011.06.059DOI Listing

Publication Analysis

Top Keywords

density functional
12
mp2 calculations
8
6-31+gdp basis
8
basis set
8
mp2 dft
4
dft initio
4
initio calculations
4
calculations thioxanthone
4
thioxanthone density
4
functional theory
4

Similar Publications

Long-lasting antimicrobial effect of multipurpose ZnO nanoparticle-loaded dental resins enhanced by blue light photodynamic therapy.

Dent Mater

January 2025

Department of Oral Health Sciences, Faculty of Dentistry, The University of British Columbia, 2199 Wesbrook Mall, room 352, BC V6T-1Z3, Canada. Electronic address:

Objectives: This study aimed to assess the potential of experimental dental resins containing ZnO nanoparticles (ZnO-NPs) for antimicrobial photodynamic therapy (aPDT) as a functional tool for the modulation of cariogenic biofilm in long-term.

Methods: Minimum inhibitory and bactericidal concentrations (MIC/MBC) of ZnO-NPs against Streptococcus mutans were initially determined under different energy densities of blue LED irradiation (0.00, 1.

View Article and Find Full Text PDF

Mild cognitive impairment is a diagnostic category marked by declines in memory and cognitive function that are less severe than those observed in Alzheimer's disease. Previous studies have indicated that individuals with mild cognitive impairment have an elevated risk of progressing to Alzheimer's disease. The hippocampus is well known to play pivotal roles in memory and cognitive functions.

View Article and Find Full Text PDF

Alterations in brain activity and functional connectivity originating residual inhibition of tinnitus induced by tailor-made notched music training.

Hear Res

October 2024

School of Biomedical Engineering, Tsinghua University, Beijing, China; School of Medicine, Shanghai University, Shanghai, China. Electronic address:

Tinnitus arises from the intricate interplay of multiple, parallel but overlapping networks, involving neuroplastic changes in both auditory and non-auditory activity. Tailor-made notched music training (TMNMT) has emerged as a promising therapeutic approach for tinnitus. Residual inhibition (RI) represents one of the rare interventions capable of temporarily alleviating tinnitus, offering a valuable tool that can be applied to tinnitus research to explore underlying tinnitus mechanisms.

View Article and Find Full Text PDF

Developing efficient and cost-effective rare earth element-based electrocatalysts for water splitting remains a significant challenge. To address this, interface engineering and charge modulation strategies were employed to create a three-dimensional coral-like CeF/MoO heterostructure electrocatalyst, grown in situ on the multistage porous channels of carbonized sugarcane fiber (CSF). Integrating abundant CeF/MoO heterostructure interfaces and numerous oxygen vacancy defects significantly enhanced the catalyst's active sites and molecular activation capabilities.

View Article and Find Full Text PDF

Structure-activity relationship of small organic molecule functionalized Bi-based heterogeneous catalysts for electrocatalytic reduction of CO to formate.

J Colloid Interface Sci

January 2025

Chemical Engineering College, Inner Mongolia University of Technology, Aimin street 49 Xincheng District, Hohhot 010051 PR China; Inner Mongolia Engineering Research Center for CO2 Capture and Utilization, Aimin street 49, Xincheng District, Hohhot 010051 PR China; Key Laboratory of CO2 Resource Utilization at Universities of Inner Mongolia Autonomous Region, Aimin street 49 Xincheng District, Hohhot 010051 PR China. Electronic address:

Ligand engineering has proven to be an effective strategy for tuning and controlling the microenvironment of coordinated metal centers, highlighting the critical bridge between the activity and structural features of catalysts during electrocatalytic CO reduction reactions (eCORR). However, the limited availability of diverse organic ligands has hindered the development of novel high-performing electrocatalysts. In contrast, small organic molecules have been widely used in the fabrication of metal complexes due to their well-defined functionalities, low cost, and easy accessibility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!