Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Aims: Fatty acids are involved in the regulation of lipolysis in adipocytes; however, this regulatory action is unclear. The present study aimed to determine the short-term influence of palmitate and its non-metabolisable analogue, 2-bromopalmitate, on the lipolytic activity of adipocytes.
Main Methods: Freshly isolated rat adipocytes were exposed to lipolytic modulators with or without palmitate or 2-bromopalmitate. Glycerol released from cells was determined as an indicator of lipolysis. Moreover, cAMP, ATP and changes in mitochondrial membrane potential were measured in cells treated with 2-bromopalmitate.
Key Findings: It was demonstrated that glycerol release from adipocytes incubated with epinephrine alone or epinephrine with insulin was unchanged by palmitate. However, 2-bromopalmitate was found to significantly decrease lipolysis stimulated by epinephrine or dibutyryl-cAMP. The inhibitory effect of 2-bromopalmitate on lipolysis was accompanied by reduced cAMP in adipocytes. Moreover, 2-bromopalmitate diminished hyperpolarisation of the inner mitochondrial membrane. Adipocyte exposure to 2-bromopalmitate also resulted in a substantial ATP depletion. The effects of 2-bromopalmitate on lipolysis and on ATP content were prevented neither by high glucose nor by alanine in the incubation medium.
Significance: These findings demonstrate that short-term adipocyte exposure to palmitate disturbs neither the lipolytic action of epinephrine nor the antilipolytic action of insulin. However, 2-bromopalmitate significantly decreases lipolysis probably due to impaired metabolic activity of mitochondria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.lfs.2011.07.010 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!