Antibody-mediated intracellular delivery of therapeutic agents has been considered for treatment of a variety of diseases. These approaches involve targeting cell-surface receptor proteins expressed by tumors or viral proteins expressed on infected cells. We examined the intracellular trafficking of a viral cell-surface-expressed protein, rabies G, with or without binding a specific antibody, ARG1. We found that antibody binding shifts the native intracellular trafficking pathway of rabies G in an Fc-independent manner. Kinetic studies indicate that the ARG1/rabies G complex progressively co-localized with clathrin, early endosomes, late endosomes, and lysosomes after addition to cells. This pathway was different from that taken by rabies G without addition of antibody, which localized with recycling endosomes. Findings were recapitulated using a cellular receptor with a well-defined endogenous recycling pathway. We conclude that antibody binding to cell-surface proteins induces redirection of intracellular trafficking of unbound or ligand bound receptors to a specific degradation pathway. These findings have broad implications for future developments of antibody-based therapeutics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3315679PMC
http://dx.doi.org/10.1016/j.yexmp.2011.05.011DOI Listing

Publication Analysis

Top Keywords

intracellular trafficking
16
proteins expressed
8
antibody binding
8
pathway rabies
8
intracellular
5
antibodies cell
4
cell surface
4
proteins
4
surface proteins
4
proteins redirect
4

Similar Publications

The development of lipid-based mRNA delivery systems has significantly facilitated recent advances in mRNA-based therapeutics. Liposomes, as the pioneering class of mRNA vectors, continue to lead in clinical trials. We previously developed a histidylated liposome that demonstrated efficient nucleic acid delivery.

View Article and Find Full Text PDF

Background: G protein-coupled receptors (GPCRs) are associated with multiple stages of the pathophysiology of Alzheimer's disease (AD). Biased GPCR signaling preferentially activates G protein- or β-arrestin-mediated signaling pathways and presents opportunities to develop more selective and safer therapeutics but remains largely unexplored in AD. Recently, we developed a G protein-biased GPR3 AD mouse model, which does not recruit β-arrestin 2, that displays reduced amyloid-β (Aβ) pathology without adverse cognitive effects associated with elimination of both G protein and β-arrestin signaling.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Retromer Therapeutics, New York, NY, USA.

Background: Genetic studies have established that loss of function SORL1 gene variants are associated with Alzheimer's disease (AD). SORL1 encodes an endosomal trafficking receptor, SORLA, which regulates endosomal protein recycling through its interaction with the retromer core complex (consisting of VPS26, VPS35 and VPS29). Deficits in the levels and function of the SORLA-retromer complex are thought to underlie AD.

View Article and Find Full Text PDF

Regulation of INPP5E in Ciliogenesis, Development, and Disease.

Int J Biol Sci

January 2025

Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, USA.

Inositol polyphosphate-5-phosphatase E (INPP5E) is a 5-phosphatase critically involved in diverse physiological processes, including embryonic development, neurological function, immune regulation, hemopoietic cell dynamics, and macrophage proliferation, differentiation, and phagocytosis. Mutations in cause Joubert and Meckel-Gruber syndromes in humans; these are characterized by brain malformations, microphthalmia, situs inversus, skeletal abnormalities, and polydactyly. Recent studies have demonstrated the key role of INPP5E in governing intracellular processes like endocytosis, exocytosis, vesicular trafficking, and membrane dynamics.

View Article and Find Full Text PDF

Hippocampal dendritic spines store-operated calcium entry and endoplasmic reticulum content is dynamic microtubule dependent.

Sci Rep

January 2025

Laboratory of Biomedical Imaging and Data Analysis, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, St. Petersburg, Russia, 194021.

One of the mechanisms of calcium signalling in neurons is store-operated calcium entry (SOCE), which is activated when the calcium concentration in the smooth endoplasmic reticulum (ER) decreases and its protein-calcium sensor STIM (stromal interacting molecule) relocate to the endoplasmic reticulum and plasma membrane junctions, forms clusters and induces calcium entry. In electrically non-excitable cells, STIM1 is coupled with the positive end of a tubulin microtubule through interaction with EB1 (end-binding) protein, which controls its oligomerization, SOCE and participates in ER movement. STIM2 homologue, which is specific for mature hippocampal dendritic spines, is known to interact with EB3 protein, however, not much is known about the role of this interaction in STIM2 clustering or ER trafficking in neurons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!