Characterization of bacterial community diversity in chronic rhinosinusitis infections using novel culture-independent techniques.

Am J Rhinol Allergy

Molecular Microbiology Research Laboratory, Pharmaceutical Science Division, Franklin-Wilkins Building, King's College London, London, United Kingdom, UK.

Published: December 2011

Background: Chronic rhinosinusitis (CRS) with or without polyps is a common chronic upper airway condition of multifactorial origin. Fundamental to effective treatment of any infection is the ability to accurately characterize the underlying cause. Many studies have shown that only a small fraction of the total range of bacterial species present in CRS is detected through conventional culture-dependent techniques. Consequently, culture data are often unrepresentative of the true diversity of the microbial community within the sample. These drawbacks, along with the length of time required to complete the analysis, strongly support the development of alternative means of assessing which bacterial species are present. As such, molecular microbiological approaches that assess the content of clinical samples in a culture-independent manner could significantly enhance the range and quality of data obtained routinely from such samples. We aimed to characterize the bacterial diversity present in tissue and mucus samples taken from the CRS setting using molecular nonculture-dependent techniques.

Methods: Through 16S ribosomal RNA (rRNA) gene clone sequencing and terminal restriction fragment length polymorphism (T-RFLP) analysis, the bacteria present in 70 clinical samples from 43 CRS patients undergoing endoscopic sinus surgery were characterized.

Results: Bacterial T-RFLP profiles were generated for 70 of 73 samples and a total of 48 separate bands were detected. Species belonging to 34 genera were identified as present by clone sequence analysis. Of the species detected, those within the genera Pseudomonas, Citrobacter, Haemophilus, Propionibacterium, Staphylococcus, and Streptococcus were found numerically dominant, with Pseudomonas aeruginosa the most frequently detected species.

Conclusion: This study has validated the use of the culture-independent technique T-RFLP in sinonasal samples. Preliminary characterization of the microbial diversity in CRS suggests a complex range of common and novel bacterial species within the upper airway in CRS, providing further evidence for the polymicrobial etiology of CRS.

Download full-text PDF

Source
http://dx.doi.org/10.2500/ajra.2011.25.3628DOI Listing

Publication Analysis

Top Keywords

bacterial species
12
chronic rhinosinusitis
8
upper airway
8
clinical samples
8
samples crs
8
crs
7
samples
6
bacterial
5
species
5
characterization bacterial
4

Similar Publications

Septicemic omphalophlebitis by Streptococcus equi subsp. zooepidemicus in a southern right whale calf (Eubalaena australis).

Vet Res Commun

January 2025

Setor de Patologia Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.

Southern right whales (Eubalaena australis) are mysticete cetaceans commonly observed in the coastal waters of Brazil, particularly in Santa Catarina State. There is limited understanding of the causes of calf mortality in this species, particularly concerning infectious diseases. We report a case of omphalophlebitis caused by Streptococcus equi subsp.

View Article and Find Full Text PDF

Treponema denticola major surface protein (Msp): a key player in periodontal pathogenicity and immune evasion.

Arch Microbiol

January 2025

Department of Stomatology, The Second Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China.

Treponema denticola, a bacterium that forms a "red complex" with Porphyromonas gingivalis and Tannerella forsythia, is associated with periodontitis, pulpitis, and other oral infections. The major surface protein (Msp) is a surface glycoprotein with a relatively well-established overall domain structure (N-terminal, central and C-terminal regions) and a controversial tertiary structure. As one of the key virulence factors of T.

View Article and Find Full Text PDF

An aerobic, Gram-stain-positive, motile, coccus-shaped actinomycete, designated strain LSe6-4, was isolated from leaves of sea purslane (Sesuvium portulacastrum L.) in Thailand and subjected to a polyphasic taxonomic studies. Growth of the strain occurred at temperatures between 15 and 38 °C, and with NaCl concentrations 0-13%.

View Article and Find Full Text PDF

Plant individuals within a species can differ markedly in their leaf chemical composition, forming so-called chemotypes. Little is known about whether such differences impact the microbial communities associated with leaves and how different environmental conditions may shape these relationships. We used Tanacetum vulgare as a model plant to study the impacts of maternal effects, leaf terpenoid chemotype, and the environment on the leaf bacterial community by growing plant clones in the field and a greenhouse.

View Article and Find Full Text PDF

A Novel Screening System to Characterize and Engineer Quorum Quenching Lactonases.

Biotechnol Bioeng

January 2025

Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, Minnesota, USA.

N-acyl l-homoserine lactones are signaling molecules used by numerous bacteria in quorum sensing. Some bacteria encode lactonases, which can inactivate these signals. Lactonases were reported to inhibit quorum sensing-dependent phenotypes, including virulence and biofilm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!