Impact of virus aggregation on inactivation by peracetic acid and implications for other disinfectants.

Environ Sci Technol

Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL).

Published: September 2011

Viruses in wastewater and natural environments are often present as aggregates. The disinfectant dose required for their inactivation, however, is typically determined with dispersed viruses. This study investigates how aggregation affects virus inactivation by chemical disinfectants. Bacteriophage MS2 was aggregated by lowering the solution pH, and aggregates were inactivated by peracetic acid (PAA). Aggregates were redispersed before enumeration to obtain the residual number of individual infectious viruses. In contrast to enumerating whole aggregates, this approach allowed an assessment of disinfection efficiency which remains applicable even if the aggregates disperse in post-treatment environments. Inactivation kinetics were determined as a function of aggregate size (dispersed, 0.55 and 0.90 μm radius) and PAA concentration (5-103 mg/L). Aggregation reduced the apparent inactivation rate constants 2-6 fold. The larger the aggregate and the higher the PAA concentration, the more pronounced the inhibitory effect of aggregation on disinfection. A reaction-diffusion based model was developed to interpret the experimental results, and to predict inactivation rates for additional aggregate sizes and disinfectants. The model showed that the inhibitory effect of aggregation arises from consumption of the disinfectant within the aggregate, but that diffusion of the disinfectant into the aggregates is not a rate-limiting factor. Aggregation therefore has a large inhibitory effect if highly reactive disinfectants are used, whereas inactivation by mild disinfectants is less affected. Our results suggest that mild disinfectants should be used for the treatment of water containing viral aggregates.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es201633sDOI Listing

Publication Analysis

Top Keywords

peracetic acid
8
paa concentration
8
inhibitory aggregation
8
mild disinfectants
8
inactivation
7
aggregates
7
aggregation
6
disinfectants
6
impact virus
4
virus aggregation
4

Similar Publications

Background: The use of laryngeal masks (LM) has increased widely today, both in anesthesia and in emergency cases. LM are available as reusable and disposable. Although reuse of disposable LM is not recommended, they are reused again after decontamination with different methods in anesthesia units in some countries.

View Article and Find Full Text PDF

Klebsiella pneumoniae is an opportunistic pathogen responsible for various infections in humans and animals. It is known for its resistance to multiple antibiotics, particularly through the production of Extended-Spectrum Beta-Lactamases (ESBLs), and its ability to form biofilms that further complicate treatment. This study aimed to isolate and identify K.

View Article and Find Full Text PDF

Moderate preoxidation is feasible for odor-producing algae treatments, usually requiring trade-offs in algal removal and integrity maintenance. However, dosing oxidants may cause internal oxidative homeostasis imbalances and secondary odorous metabolite responses, adding new trade-offs for moderate treatments. Peracetic acid (PAA)/Fe processes are promising strategies in moderate treatments and thus were applied to examine how to achieve the following three trade-offs: good algal removal, no odorant increases and no releases.

View Article and Find Full Text PDF

Control of rotavirus by sequential stress of disinfectants and gamma irradiation in leafy vegetable industry.

Food Res Int

January 2025

Department of Food Safety and Regulatory Science, Advanced Food Safety Research Group, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea. Electronic address:

Rotavirus (RV) causes severe gastroenteritis in infants and young children worldwide. Fresh produce has been reported as a source of RV infection during production and harvesting, leading to foodborne illness. Cases of contamination from contact surfaces have also been reported.

View Article and Find Full Text PDF

The sulfur-containing chemical warfare agents sulfur mustard HD and nerve agent VX are highly toxic and persistent in the environment. Therefore, their neutralisation requires harsh oxidation conditions, but also precise selectivity. Here we report the safe and effective detoxification of surrogates CEES and PhX by selective oxidation of the sulfur atom by generating peracetic acid from AcOEt and aq.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!