Background: Sensory stimuli evoke responses in cerebellar Purkinje cells (PCs) via the mossy fiber-granule cell pathway. However, the properties of synaptic responses evoked by tactile stimulation in cerebellar PCs are unknown. The present study investigated the synaptic responses of PCs in response to an air-puff stimulation on the ipsilateral whisker pad in urethane-anesthetized mice.

Methods And Main Results: Thirty-three PCs were recorded from 48 urethane-anesthetized adult (6-8-week-old) HA/ICR mice by somatic or dendritic patch-clamp recording and pharmacological methods. Tactile stimulation to the ipsilateral whisker pad was delivered by an air-puff through a 12-gauge stainless steel tube connected with a pressurized injection system. Under current-clamp conditions (I = 0), the air-puff stimulation evoked strong inhibitory postsynaptic potentials (IPSPs) in the somata of PCs. Application of SR95531, a specific GABA(A) receptor antagonist, blocked IPSPs and revealed stimulation-evoked simple spike firing. Under voltage-clamp conditions, tactile stimulation evoked a sequence of transient inward currents followed by strong outward currents in the somata and dendrites in PCs. Application of SR95531 blocked outward currents and revealed excitatory postsynaptic currents (EPSCs) in somata and a temporal summation of parallel fiber EPSCs in PC dendrites. We also demonstrated that PCs respond to both the onset and offset of the air-puff stimulation.

Conclusions: These findings indicated that tactile stimulation induced asynchronous parallel fiber excitatory inputs onto the dendrites of PCs, and failed to evoke strong EPSCs and spike firing in PCs, but induced the rapid activation of strong GABA(A) receptor-mediated inhibitory postsynaptic currents in the somata and dendrites of PCs in the cerebellar cortex Crus II in urethane-anesthetized mice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3144243PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0022752PLOS

Publication Analysis

Top Keywords

tactile stimulation
16
synaptic responses
12
dendrites pcs
12
pcs
10
responses evoked
8
evoked tactile
8
purkinje cells
8
cerebellar cortex
8
cortex crus
8
air-puff stimulation
8

Similar Publications

Objective: To identify, appraise and synthesize current evidence on different sensory-based interventions on delirium prevention in critically ill patients.

Data Sources: A comprehensive electronic literature search was performed in the PubMed, Embase, Cumulative Index of Nursing and Allied Health Literature, Cochrane Library, China Biology Medicine, China National Knowledge Infrastructure, Wanfang and WeiPu databases from inception to 2 June 2022. The data were updated on 24 December 2022.

View Article and Find Full Text PDF

Electro-tactile modulation of muscle activation and intermuscular coordination in the human upper extremity.

Sci Rep

January 2025

Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd, SERC Room 2011, Houston, TX, 77204-5060, USA.

Electro-tactile stimulation (ETS) can be a promising aid in augmenting sensation for those with sensory deficits. Although applications of ETS have been explored, the impact of ETS on the underlying strategies of neuromuscular coordination remains largely unexplored. We investigated how ETS, alone or in the presence of mechano-tactile environment change, modulated the electromyogram (EMG) of individual muscles during force control and how the stimulation modulated the attributes of intermuscular coordination, assessed by muscle synergy analysis, in human upper extremities.

View Article and Find Full Text PDF

The recent identification of Piezo ion channels demonstrating a mechano-sensitive impact on neurons revealed distinct Piezo-1 and 2 types. While Piezo-1 predominates in neurons linked to non-sensory stimulation, such as pressure in blood vessels, Piezo-2 predominates in neurons linked to sensory stimulation, such as touch. Piezo-1 and 2 have a major bidirectional impact on transient receptor potential (TRP) ion channels, and TRPs also impact neurotransmitter release.

View Article and Find Full Text PDF

Navigating the complexity of touch.

Science

January 2025

Laboratory for Bionic Integration, Department of Biomedical Engineering, Lerner Research Institute and Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA.

Precise cortical microstimulation improves tactile experience in brain-machine interfaces.

View Article and Find Full Text PDF

Intracortical microstimulation (ICMS) of somatosensory cortex evokes tactile sensations whose properties can be systematically manipulated by varying stimulation parameters. However, ICMS currently provides an imperfect sense of touch, limiting manual dexterity and tactile experience. Leveraging our understanding of how tactile features are encoded in the primary somatosensory cortex (S1), we sought to inform individuals with paralysis about local geometry and apparent motion of objects on their skin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!