A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Characterization of systemic and histologic injury after crush syndrome and intervals of reperfusion in a small animal model. | LitMetric

Background: Prolonged compression of limb muscles and subsequent decompression are important in the development of crush syndrome (CS). We applied a simple rubber tourniquet to rat hind limbs to create a CS model.

Methods: Anesthetized rats were subjected to bilateral hind limb compression for 5 hours followed by decompression and reperfusion for 0 hour, 1 hour, 3 hours, and 24 hours under monitoring of arterial blood pressure and electrocardiography. Blood and tissue samples were collected for histology, biochemical analysis, and tissue myeloperoxidase activity assessment.

Results: The survival rates of the CS-model groups remained at 100% until 3 hours, however, dropped to 25% at 24 hours after reperfusion mainly because of hyperkalemia and consequent hypotension observed at 1 hour and deteriorated at 3 hours after reperfusion. Rhabdomyolysis evaluated by circulating and histologic markers of injury was found as early as 1 hour and more marked at 3 hours, resulting in impaired renal function 24 hours after reperfusion. Myeloperoxidase activities increased with incremental periods after reperfusion not only in injured limb muscles but also in kidney and lung, suggesting an abnormal interaction between the vascular endothelium and circulating leukocytes after rhabdomyolysis, possibly causing subsequent multiple organ dysfunction frequently encountered in CS.

Conclusion: The findings from this study demonstrate the feasibility of a novel small animal model of extremity crush injury. By using this model, the impact of incremental periods of reperfusion on mortality and remote organ dysfunctions can be characterized. Future studies are necessary to better define a threshold for this injury pattern and the impact of other factors underlying this syndrome.

Download full-text PDF

Source
http://dx.doi.org/10.1097/TA.0b013e31820ca00aDOI Listing

Publication Analysis

Top Keywords

hours reperfusion
12
crush syndrome
8
small animal
8
animal model
8
limb muscles
8
hours
8
incremental periods
8
periods reperfusion
8
reperfusion
7
characterization systemic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!