We report on the fabrication of periodic arrays of deep nanopores with high aspect ratios in crystalline silicon. The radii and pitches of the pores were defined in a chromium mask by means of deep UV scan and step technology. The pores were etched with a reactive ion etching process with SF(6), optimized for the formation of deep nanopores. We have realized structures with pitches between 440 and 750 nm, pore diameters between 310 and 515 nm, and depth to diameter aspect ratios up to 16. To the best of our knowledge, this is the highest aspect ratio ever reported for arrays of nanopores in silicon made with a reactive ion etching process. Our experimental results show that the etching rate of the nanopores is aspect-ratio-dependent, and is mostly influenced by the angular distribution of the etching ions. Furthermore we show both experimentally and theoretically that, for sub-micrometer structures, reducing the sidewall erosion is the best way to maximize the aspect ratio of the pores. Our structures have potential applications in chemical sensors, in the control of liquid wetting of surfaces, and as capacitors in high-frequency electronics. We demonstrate by means of optical reflectivity that our high-quality structures are very well suited as photonic crystals. Since the process studied is compatible with existing CMOS semiconductor fabrication, it allows for the incorporation of the etched arrays in silicon chips.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0957-4484/19/14/145304 | DOI Listing |
Curr Res Parasitol Vector Borne Dis
November 2024
Unit of Vector Ecology, Pasteur Institute of Tunis, Tunis, Tunisia.
The taxa and are sympatric in Tunisia. The genetics underlying their morphological differences are unresolved. In this study, ticks collected in Jouza-Amdoun, Tunisia, were morphologically identified and sequenced using Oxford Nanopore Technologies.
View Article and Find Full Text PDFBrief Bioinform
November 2024
Department of Computer Science, The University of Hong Kong, Pok Fu Lam Road, Hong Kong, 999077, China.
Ensuring a unified variant representation aligning the sequencing data is critical for downstream analysis as variant representation may differ across platforms and sequencing conditions. Current approaches typically treat variant unification as a post-step following variant calling and are incapable of measuring the correct variant representation from the outset. Aligning variant representations with the alignment before variant calling has benefits like providing reliable training labels for deep learning-based variant caller model training and enabling direct assessment of alignment quality.
View Article and Find Full Text PDFState-of-the-art computational methods combined with common idealized structural models provide an incomplete understanding of experimental observations on real nanostructures, since manufacturing introduces unavoidable deviations from the design. We propose to close this knowledge gap by using the real structure of a manufactured nanostructure as input in computations to obtain a realistic comparison with measurements on the same nanostructure. We demonstrate this approach on the structure of a real inverse woodpile photonic bandgap crystal made from silicon, as previously obtained by synchrotron X-ray imaging.
View Article and Find Full Text PDFBrief Bioinform
September 2024
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, No. 7 Jinsui Road, Tianhe District, Guangzhou 510060, China.
Decoding DNA methylation sites through nanopore sequencing has emerged as a cutting-edge technology in the field of DNA methylation research, as it enables direct sequencing of native DNA molecules without the need for prior enzymatic or chemical treatments. During nanopore sequencing, methylation modifications on DNA bases cause changes in electrical current intensity. Therefore, constructing deep neural network models to decode the electrical signals of nanopore sequencing has become a crucial step in methylation site identification.
View Article and Find Full Text PDFPhys Chem Chem Phys
November 2024
Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas, 78712, USA.
Water isotope separation, specifically separating heavy from light water, is a technologically important problem due to the usage of heavy water in applications such as nuclear magnetic resonance, nuclear power, and spectroscopy. Separation of heavy water from light water is difficult due to very similar physical and chemical properties between the isotopes. We show that a catalytically active ultrathin membrane (, a nanopore in MoS) can enable chemical exchange processes and physicochemical mechanisms that lead to efficient separation of deuterium from hydrogen.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!