Surface stress induced by molecular adsorption in three different binding processes has been studied experimentally using a microcantilever sensor. A comprehensive free-energy analysis based on an energy conservation approach is proposed to explain the experimental observations. We show that when guest molecules bind to atoms/molecules on a microcantilever surface, the released binding energy is retained in the host surface, leading to a metastable state where the excess energy on the surface is manifested as an increase in surface stress leading to the bending of the microcantilever. The released binding energy appears to be almost exclusively channeled to the surface energy, and energy distribution to other channels, including heat, appears to be inactive for this micromechanical system. When this excess surface energy is released, the microcantilever relaxes back to the original state, and the relaxation time depends on the particular binding process involved. Such vapor phase experiments were conducted for three binding processes: physisorption, hydrogen bonding, and chemisorption. Binding energies for these three processes were also estimated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0957-4484/19/10/105501 | DOI Listing |
Anal Bioanal Chem
January 2025
School of Life Sciences, Nantong University, 9 Seyuan Road, Nantong, 226019, Jiangsu, China.
Hydrogen peroxide (HO) is a critical signaling molecule with significant roles in various physiological processes in plants. Understanding its regulation through in situ monitoring could offer deeper insights into plant responses and stress mechanisms. In this study, we developed a microneedle electrochemical sensor to monitor HO in situ, offering deeper insights into plant stress responses.
View Article and Find Full Text PDFSci Rep
January 2025
School of Instrumental Science and Engineering, Harbin Institute of Technology, 150001, Harbin, People's Republic of China.
In this study, a method for predicting the thermal shock life of coatings is proposed, and a model for predicting the thermal shock life of coatings based on high temperature thermal shock life test and three-dimensional heat transfer analysis is established. Firstly, the thermal shock life of coatings at different cooling and heating cycle temperatures is obtained through a designed thermal shock life testing device for silicide coatings at a wide-temperature range from 500℃ to 3000℃. Secondly, the actual thickness of the coating and the continuous oxidation in the thermal shock life test are taken into consideration.
View Article and Find Full Text PDFZhongguo Gu Shang
January 2025
Ningbo Beilun People's Hospital, Ningbo 315800, Zhejiang, China.
Objective: To investigate the effects of bone density, plate bending degree and proximal screw type on the stress fracture of clavicle hook.
Methods: Three sows weighing between 45 and 50 kg were selected, from which a total of 40 rivs were collected. The 15 ribs of sows were divided into 3 groups according to bone density and bone hardness with 5 rivs in each group.
Zhonghua Kou Qiang Yi Xue Za Zhi
January 2025
Department of Stomatology, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, China.
To investigate the effect of concentrated growth factor (CGF) on the biological performance of human dental pulp stem cells (hDPSCs) under oxidative stress status induced by hydrogen peroxide (HO). The hDPSCs were isolated by using tissue block separation method from healthy permanent teeth extracted for orthodontic reason. hDPSCs surface markers CD34, CD45, CD90 and CD105 were detected by flow cytometry.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
The mechanical effects on carbon-based metal-free catalysts (C-MFCs) have rarely been explored, despite the global interest in C-MFCs as substitutes for noble metal catalysts. Stress is ubiquitous, whereas its dedicated study is severely restricted due to its frequent entanglement with other structural variables, such as dopants, defects, and interfaces in catalysis. Herein, we report a proof-of-concept study by establishing a platform to continuously apply strain to a highly oriented pyrolytic graphite (HOPG) lamina, simultaneously collecting electrochemical signals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!