On the interface magnetism of thin oxidized Co films: orbital and spin moments.

J Phys Condens Matter

Department of Physics, Uppsala University, Box 530, 751 21 Uppsala, Sweden. Department of Imaging and Applied Physics, Curtin University of Technology, Perth, WA 6845, Australia. The Bragg Institute, Australian Nuclear Science and Technology Organization, Lucas Heights, NSW 2234, Australia.

Published: March 2009

An x-ray magnetic circular dichroism study of a polycrystalline Co/CoO bilayer is presented. Using both the chemical specificity and surface sensitivity in the core level techniques, we find that uncompensated Co(2+) spin moments participate in the remanent ferromagnetic response of the bilayer that has oxygen nearest neighbors. These are likely located at the Co/CoO interface. As intermixing of magnetic species is not present in Co/CoO, it is concluded that the observed interface moments are due to interface roughness. Given their direction, these moments appear to not directly correlate to the exchange bias in these bilayers.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0953-8984/21/12/124211DOI Listing

Publication Analysis

Top Keywords

spin moments
8
interface
4
interface magnetism
4
magnetism thin
4
thin oxidized
4
oxidized films
4
films orbital
4
orbital spin
4
moments
4
moments x-ray
4

Similar Publications

This study presents Born-Oppenheimer energies and transition dipole moments of the 36 lowest electronic states of the N2+ ion as a function of internuclear distance in the interval between 1.5 and 10 bohrs obtained in first-principles calculations. The electronic states are of the total electronic spin S = 1/2, 3/2, and 5/2, dissociating toward to the lowest four N(4S0) + N+(3P), N(2P0) + N+(3P), N(2D0) + N+(3P), and N(4S0) + N+(1D) dissociation limits.

View Article and Find Full Text PDF

Tuning anomalous Hall conductivity antiferromagnetic configurations in GdPtBi.

Phys Chem Chem Phys

January 2025

Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha No 10, Bandung 40132, Jawa Barat, Indonesia.

The magnetic, electronic, and topological properties of GdPtBi were systematically investigated using first-principles density functional theory (DFT) calculations. Various magnetic configurations were examined, including ferromagnetic (FM) and antiferromagnetic (AFM) states, with particular focus on AFM states where the Gd magnetic moments align either parallel (AFM) or perpendicular (AFM) to the [111] crystal direction. For AFM, the in-plane angles were varied at = 0°, 15°, and 30° (denoted as AFM, AFM, and AFM, respectively).

View Article and Find Full Text PDF

Electric dipole moment of excited octupolar molecules: Potential qubit implementation.

J Chem Phys

January 2025

Volgograd State University, University Avenue 100, Volgograd 400062, Russia.

The first excited state of conjugated donor-acceptor molecules of C3 symmetry (octupolar molecules) is doubly degenerate. Such a doublet is known to be isomorphic to a spin 1/2. It is shown that a large electric dipole moment is associated with this spin.

View Article and Find Full Text PDF

The detailed anisotropic dispersion of the low-temperature, low-energy magnetic excitations of the candidate spin-triplet superconductor UTe is revealed using inelastic neutron scattering. The magnetic excitations emerge from the Brillouin zone boundary at the high symmetry and points and disperse along the crystallographic -axis. In applied magnetic fields to at least = 11 T along the , the magnetism is found to be field-independent in the ( 0) plane.

View Article and Find Full Text PDF

Hybridization effects on the magnetic ground state of ruthenium in double perovskite LaZnRuTiO.

J Phys Condens Matter

January 2025

School of Materials Science, Indian Association for the Cultivation of Science, Calcutta 700 032, Kolkata, West Bengal, 700032, INDIA.

An exotic quantum mechanical ground state, i.e. the nonmagnetic= 0 state, has been predicted for higher transition metal tsystems, due to the influence of strong spin-orbit coupling (SOC) or in other words, due to unquenched orbital moment contribution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!