Ab initio refinement of the thermal equation of state for bcc tantalum: the effect of bonding on anharmonicity.

J Phys Condens Matter

Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, PO Box 919-102, 621900 Mianyang, Sichuan, People's Republic of China. Institute of Atomic and Molecular Physics, College of Physical Science and Technology, Sichuan University, Chengdu 610065, People's Republic of China.

Published: March 2009

We report a detailed ab initio study for body-centered-cubic (bcc) Ta within the framework of the quasiharmonic approximation (QHA) to refine its thermal equation of state and thermodynamic properties. Based on the excellent agreement of our calculated phonon dispersion curve with experiment, the accurate thermal equations of state and thermodynamic properties are well reproduced. The thermal equation of state (EOS) and EOS parameters are considerably improved in our work compared with previous results by others. Furthermore, at high temperatures, the excellent agreement of our obtained thermal expansion and Hugoniot curves with experiments greatly verifies the validity of the quasiharmonic approximation at higher temperatures. It is known that pressure suppresses the vibrations of atoms from their equilibrium positions, i.e. the bondings among atoms are strengthened by pressure; for the same temperature, anharmonicity becomes less important at high pressure. Thus the highest valid temperature of the QHA can be reasonably extended to the larger range.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0953-8984/21/9/095408DOI Listing

Publication Analysis

Top Keywords

thermal equation
12
equation state
12
quasiharmonic approximation
8
state thermodynamic
8
thermodynamic properties
8
excellent agreement
8
thermal
5
initio refinement
4
refinement thermal
4
state
4

Similar Publications

Estimating in vivo power deposition density in thermotherapies based on ultrasound thermal strain imaging.

J Acoust Soc Am

January 2025

Key Laboratory of Modern Acoustics (MOE), School of Physics, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China.

In thermal therapies, accurate estimation of in-tissue power deposition density (PDD) is essential for predicting temperature distributions over time or regularizing temperature imaging. Based on our previous work on ultrasound thermometry, namely, multi-thread thermal strain imaging (MT-TSI), this work develops an in vivo PDD estimation method. Specifically, by combining the TSI model infinitesimal echo strain filter with the bio-heat transfer theory (the Pennes equation), a finite-difference time-domain model is established to allow online extraction of the PDD.

View Article and Find Full Text PDF

This study investigates the significance of single-walled (SWCNTs) and multi-walled (MWCNTs) carbon nanotubes with a convectional fluid (water) over a vertical cone under the influences of chemical reaction, magnetic field, thermal radiation and saturated porous media. The impact of heat sources is also examined. Based on the flow assumptions, the fundamental flow equations are modeled as partial differential equations (PDEs).

View Article and Find Full Text PDF

We present a nonlinear model of thermal field emission in resonant tunneling nanostructures with multiple barriers and potential wells, based on an accurate determination of the quantum potential shape and a rigorous solution of the Schrödinger equation, while considering thermal balance. The model applies to vacuum and semiconductor resonant tunnel diode and triode structures with two and three electrodes and to the general case of two-way tunneling with electrode heating. The complete balance of heat release and transfer is accounted for, with heat transport considered ballistic.

View Article and Find Full Text PDF

Elucidating Thermal Decomposition Kinetic Mechanism of Charged Layered Oxide Cathode for Sodium-Ion Batteries.

Adv Mater

January 2025

Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China.

The safety of the P2-type layered transition metal oxides (P2-NaTMO), a promising cathode material for sodium-ion batteries (SIBs), is a prerequisite for grid-scale energy storage systems. However, previous thermal runaway studies mainly focused on morphological changes resulting from gas production detection and thermogravimetric analysis, while the structural transition and chemical reactions underlying these processes are still unclear. Herein, a comprehensive methodology to unveil an interplay mechanism among phase structures, interfacial microcrack, and thermal stability of the charged P2-NaNiMnO (NNMO) and the P2-NaNiLiMnO (NNMO-Li) at elevated temperatures is established.

View Article and Find Full Text PDF

This paper presents an in-depth analytical investigation into the time-dependent flow of a Casson hybrid nanofluid over a radially stretching sheet. The study introduces the effects of magnetic fields and thermal radiation, along with velocity and thermal slip, to model real-world systems for enhancing heat transfer in critical industrial applications. The hybrid nanofluid consists of three nanoparticles-Copper and Graphene Oxide-suspended in Kerosene Oil, selected for their stable and superior thermal properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!