The site occupancy, structure, and bonding properties of O in an NiAl grain boundary (GB) have been investigated by employing a first-principles total energy method based on density functional theory with the generalized gradient approximation and ultrasoft pseudopotential. The Σ5(310)/[001] tilt GB of NiAl has been chosen because (i) the Σ = 5 GB has been observed to be a higher fraction in NiAl experimentally, and (ii) the Σ5(310)/[001] is energetically favorable in comparison with the Σ5(210)/[001]. The NiAl GB is shown to favor the O segregation with a segregation energy of -1.75 eV, indicating that most of the O impurity will distribute in the NiAl GB thermodynamically. Moreover, O is shown to prefer occupying the interstitial sites rather than the substitutional sites in the GB according to the calculated formation energies. The O-Al bond is energetically favorable as compared with the O-Ni bond due to different electronegativity of Al and Ni in reference to O. Charge distribution and the density of states further indicate the intrinsic bonding properties of O-Al that contain obvious covalent characteristics. It is interesting to find that O is coplanar with the surrounding Al atoms in both interstitial and substitutional cases with lower formation energies, forming stronger coplanar O-Al bonding clusters. Such stronger bonding clusters in the GB can embrittle the NiAl intermetallics and thus are not beneficial to the plasticity of NiAl. Our results will provide a useful reference for improving the mechanical properties and for understanding the oxidation effect of the NiAl intermetallics.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0953-8984/21/1/015002DOI Listing

Publication Analysis

Top Keywords

nial
9
coplanar o-al
8
o-al bonding
8
nial grain
8
grain boundary
8
bonding properties
8
energetically favorable
8
formation energies
8
bonding clusters
8
nial intermetallics
8

Similar Publications

In the era of artificial intelligence, there has been a rise in novel computing methods due to the increased demand for rapid and effective data processing. It is of great significance to develop memristor devices capable of emulating the computational neural network of the brain, especially in the realm of artificial intelligence applications. In this work, a memristor based on NiAl-layered double hydroxides is presented with excellent electrical performance, including analog resistive conversion characteristics and the effect of multi-level conductivity modulation.

View Article and Find Full Text PDF

Unlabelled: The presence of bromate in water poses a significant health risk. In order to effectively eliminate bromate from water, this study synthesized a series of ternary Zn-Ni-Al layered double hydroxides with varying Zn/Ni/Al atomic ratios using a co-precipitation method. The adsorbents were characterized using various techniques including XRD, Fourier transform infrared spectroscopy, and N adsorption-desorption isotherms.

View Article and Find Full Text PDF

Critical Role of Tetrahedral Coordination in Determining the Polysulfide Conversion Efficiency on Spinel Oxides.

J Am Chem Soc

January 2025

Energy Research Institute@NTU (ERI@N), Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore639798 ,Singapore.

Understanding the structure-property relationship and the way in which catalysts facilitate polysulfide conversion is crucial for the rational design of lithium-sulfur (Li-S) battery catalysts. Herein, a series of NiAlO, CoAlO, and CuAlO spinel oxides with varying Ni, Co, or Cu tetrahedral and octahedral site occupancy are studied as Li-S battery catalysts. Combined with experimental and theoretical analysis, the tetrahedral site is identified as the most active site for enhancing polysulfide adsorption and charge transfer.

View Article and Find Full Text PDF

In contrast to the traditional perspective that thermal fluctuations are insignificant in surface dynamics, here we report their influence on surface reaction dynamics. Using real-time low-energy electron microscopy imaging of NiAl(100) under both vacuum and O atmospheres, we demonstrate that transient temperature variations substantially alter the direction of atom diffusion between the surface and bulk, leading to markedly different oxidation outcomes. During heating, substantial outward diffusion of atoms from the bulk to the surface results in step growth.

View Article and Find Full Text PDF

Emerging frontiers of nickel-aluminium layered double hydroxide heterojunctions for photocatalysis.

Dalton Trans

January 2025

National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

The unique benefits of nickel-aluminium layered double hydroxide (Ni-Al LDH)-based heterojunctions, including large surface area, tunable bandgap and morphology, abundant reaction sites, and high activity, selectivity, and photostability, make them extremely promising for photocatalytic applications. Given the importance and benefits of Ni-Al LDH-based heterojunctions in photocatalysis, it is necessary to provide a summary of Ni-Al LDH-based heterojunctions for photocatalytic applications. Hence, in this review, we thoroughly described the material design for Ni-Al LDH-based heterojunctions, along with their recent developments in various photocatalytic applications, , H evolution, CO reduction, and pollutant removal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!