Dilute sulfuric acid (DA), sulfur dioxide (SO(2)), liquid hot water (LHW), soaking in aqueous ammonia (SAA), ammonia fiber expansion (AFEX), and lime pretreatments were applied to Alamo, Dacotah, and Shawnee switchgrass. Application of the same analytical methods and material balance approaches facilitated meaningful comparisons of glucose and xylose yields from combined pretreatment and enzymatic hydrolysis. Use of a common supply of cellulase, beta-glucosidase, and xylanase also eased comparisons. All pretreatments enhanced sugar recovery from pretreatment and subsequent enzymatic hydrolysis substantially compared to untreated switchgrass. Adding beta-glucosidase was effective early in enzymatic hydrolysis while cellobiose levels were high but had limited effect on longer term yields at the enzyme loadings applied. Adding xylanase improved yields most for higher pH pretreatments where more xylan was left in the solids. Harvest time had more impact on performance than switchgrass variety, and microscopy showed changes in different features could impact performance by different pretreatments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2011.06.069 | DOI Listing |
Biomacromolecules
January 2025
Departamento de Química, Federal University of Santa Catarina, Roberto Sampaio Gonzaga Street, 88040-380 Florianópolis, Brazil.
Polyamide (PA) has notable physical and chemical properties and is one of the most versatile synthetic materials in the industrial sector. However, its hydrophobicity creates significant challenges in its beneficiation and modification. Modifications of PA with chitosan nanoparticles (CNPs) can improve its undesired properties but are rarely found in the literature due to the weak interaction between the chemical groups of both structures.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan Province, PR China. Electronic address:
The aim of this study was to investigate the mechanism of protein digestibility improvement by exploring the changes in structural characteristics of proteins in noodles with varying levels of mechanically activated starch. Therefore, different levels of mechanically activated wheat starch were mixed with refined wheat flour to produce noodles. Results showed that moderately mechanically activated starch could significantly improve protein digestibility and noodles containing 8.
View Article and Find Full Text PDFBioresour Technol
January 2025
Department of Frontier Science for Advanced Environment, Graduate School of Environmental Sciences, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan. Electronic address:
This study investigated the performance and phase-specific characteristics of mesophilic co-digestion of food waste (FW) with rice straw (RS) at different RS proportions (40 %, 60 %, and 80 %), as well as mono-digestion of RS. The system achieved optimal performance at 40 % RS content, with a methane yield of 383.8 mL/g-VS and cellulose removal efficiency exceeding 75 %.
View Article and Find Full Text PDFAn Acad Bras Cienc
January 2025
Universidade Federal de Sergipe, Departamento de Engenharia Química - DEQ, Laboratório de Laboratório de Biotecnologia Ambiental (LABAM), Campus São Cristóvão, Rodovia Marechal Rondon, s/n, Rosa Elze, 49100-000 São Cristóvão, SE, Brazil.
Lipases are enzymes that have an important role in the industry for their wide use, giving rise to a great interest in industrial bioprocesses due to their versatility. One of the applications is the enzymatic hydrolysis of waste oils. This work consists of evaluating the production of lipases using several concentrations of residual frying oil (RFO) and different pHs, through ANOVA analysis.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
Methicillin-resistant (MRSA) is a refractory pneumonia-causing pathogen due to the antibiotic resistance and the characteristics of persisting inside its host cell. Lysostaphin is a typical bacteriolytic enzyme for degrading bacterial cell walls via hydrolysis of pentaglycine cross-links, showing potential to combat multidrug-resistant bacteria. However, there are still grand challenges for native lysostaphin because of its poor shelf stability and limited bioavailability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!