We have previously demonstrated that in Ova-immunized mice the increase in intra-macrophage thiol pool induced by pro-GSH molecules modulates the Th1/Th2 balance in favour of a Th1-type immune response. We show now that the same molecules can support a Th1-type over Th2-type immunity against Tat, which is an early HIV-1 regulatory protein and a Th1 polarizing immunomodulator that is increasingly considered in new anti-HIV vaccination strategies. Our results indicate that Tat-immunized mice pre-treated with the C4 (n-butanoyl) derivative of reduced glutathione (GSH-C4) or a pro-drug of N-acetylcysteine (NAC) and beta-mercaptoethylamine (MEA) (I-152), have decreased levels of anti-Tat IgG1 as well as increased levels of anti-Tat IgG2a and IgG2b isotypes suggesting a Th1-type response. Moreover, Th1-(IFN-γ and IL-2) Ag-specific cellular responses were detected by ELISPOT assay in splenocytes of the same animals as well as an increase of IL-12 levels in the plasma. These findings suggest that the Th1 immune response to HIV-1 Tat could be further polarized by these molecules. These results together with those previously reported suggest that pro-GSH molecules could be used to modulate the immune response towards different antigens and may be further exploited for inducing specific Th1 immune responses against other HIV antigens as well as other intracellular pathogens in new Tat-based vaccination protocols.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vaccine.2011.07.101DOI Listing

Publication Analysis

Top Keywords

pro-gsh molecules
12
immune response
12
immune responses
8
hiv-1 tat
8
levels anti-tat
8
th1 immune
8
immune
5
molecules
5
modulation th1/th2
4
th1/th2 immune
4

Similar Publications

Host-directed therapy using drugs that target cellular pathways required for virus lifecycle or its clearance might represent an effective approach for treating infectious diseases. Changes in redox homeostasis, including intracellular glutathione (GSH) depletion, are one of the key events that favor virus replication and contribute to the pathogenesis of virus-induced disease. Redox homeostasis has an important role in maintaining an appropriate Th1/Th2 balance, which is necessary to mount an effective immune response against viral infection and to avoid excessive inflammatory responses.

View Article and Find Full Text PDF

I-152 combines two pro-glutathione (GSH) molecules, namely N-acetyl-cysteine (NAC) and cysteamine (MEA), to improve their potency. The co-drug efficiently increases/replenishes GSH levels in vitro and in vivo; little is known about its mechanism of action. Here we demonstrate that I-152 not only supplies GSH precursors, but also activates the antioxidant kelch-like ECH-associated protein 1/nuclear factor E2-related factor 2 (KEAP1/NRF2) pathway.

View Article and Find Full Text PDF

Despite early treatment with antimycobacterial combination therapy, drug resistance continues to emerge. Maintenance of redox homeostasis is essential for Mycobacterium avium (M. avium) survival and growth.

View Article and Find Full Text PDF

Glutathione (GSH) has poor pharmacokinetic properties; thus, several derivatives and biosynthetic precursors have been proposed as GSH-boosting drugs. I-152 is a conjugate of -acetyl-cysteine (NAC) and -acetyl-β-mercaptoethylamine (SMEA) designed to release the parent drugs (i.e.

View Article and Find Full Text PDF

Unlabelled: Injection of the LP-BM5 murine leukemia virus into mice causes murine AIDS, a disease characterized by many dysfunctions of immunocompetent cells. To establish whether the disease is characterized by glutathione imbalance, reduced glutathione (GSH) and cysteine were quantified in different organs. A marked redox imbalance, consisting of GSH and/or cysteine depletion, was found in the lymphoid organs, such as the spleen and lymph nodes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!