Effect of sulfur concentration on the morphology of carbon nanofibers produced from a botanical hydrocarbon.

Nanoscale Res Lett

Department of Environmental Technology and Urban Planning, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, 466-8555, Japan.

Published: July 2008

Carbon nanofibers (CNF) with diameters of 20-130 nm with different morphologies were obtained from a botanical hydrocarbon: Turpentine oil, using ferrocene as catalyst source and sulfur as a promoter by simple spray pyrolysis method at 1,000 °C. The influence of sulfur concentration on the morphology of the carbon nanofibers was investigated. SEM, TEM, Raman, TGA/DTA, and BET surface area were employed to characterize the as-prepared samples. TEM analysis confirms that as-prepared CNFs have a very sharp tip, bamboo shape, open end, hemispherical cap, pipe like morphology, and metal particle trapped inside the wide hollow core. It is observed that sulfur plays an important role to promote or inhibit the CNF growth. Addition of sulfur to the solution of ferrocene and turpentine oil mixture was found to be very effective in promoting the growth of CNF. Without addition of sulfur, carbonaceous product was very less and mainly soot was formed. At high concentration of sulfur inhibit the growth of CNFs. Hence the yield of CNFs was optimized for a given sulfur concentration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3244866PMC
http://dx.doi.org/10.1007/s11671-008-9143-3DOI Listing

Publication Analysis

Top Keywords

sulfur concentration
12
carbon nanofibers
12
sulfur
8
concentration morphology
8
morphology carbon
8
botanical hydrocarbon
8
turpentine oil
8
addition sulfur
8
nanofibers produced
4
produced botanical
4

Similar Publications

Copper(II) oxide nanoparticles (CuO NPs) are used in different industries and agriculture, thus leading to their release to the environment, which raises concerns about their ecotoxicity and biosafety. The main toxicity mechanism of nanometals is oxidative stress as a result of the formation of reactive oxygen species caused by metal ions released from nanoparticles. Bacterial biofilms are more resistant to physical and chemical factors than are planktonic cells due to the extracellular polymeric matrix (EPM), which performs a protective function.

View Article and Find Full Text PDF

Nanoparticles have been extensively studied for many years due to their important roles in catalysis, metallurgy and high temperature superconductors. But, Nanoparticles are extremely unstable and easily react with other substances. So, to control the size and the shape of nanoparticles they must be stabilized.

View Article and Find Full Text PDF

In this study, a recirculating aquaculture system (RAS) was constructed, and a denitrification bioreactor was installed to enhance nitrogen removal. In addition, the nitrogen removal performance of the system was investigated. FeS was prepared by calcining iron (Fe) and S powder, which was used as an electron donor for denitrification.

View Article and Find Full Text PDF

Effects of exogenous selenium application on quality characteristics, selenium speciation, and in vitro bioaccessibility of rice pancakes.

Food Chem X

January 2025

Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, Hubei 430068, PR China.

Selenium is an essential trace element for human health. To date, a hotspot of functional foods is strengthening the content of organic Se in food using biological Se enrichment. Herein, Se-enriched rice pancakes were produced by directly adding different sodium selenite concentrations into the fermentation process.

View Article and Find Full Text PDF

Aiming to reduce sulfur oxides emission in the atmosphere, the International Maritime Organization developed regulations on shipping that came into effect in 2020. The new rules incentivized many owners to install scrubber systems on thousands of ships. However, the overall environmental implications of scrubbers is a controversial subject, largely due to the release of acids, metals, and chemicals in the oceans and impact on marine life.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!