Aim: The purpose of this study was to investigate associations between the extent of chondrocyte apoptosis and expression of the articular cartilage (AC) extracellular matrix (ECM) molecules, cartilage oligomeric matrix protein (COMP) and fibronectin.
Method: Cartilage from four sites (when available) on equine left middle carpal joints (n = 12) were used. Expression of COMP and fibronectin was determined using specific polyclonal antibodies and a biotin-streptavidin/peroxidase method. The intensity of staining for matrix molecules was graded (none, mild, moderate, strong) in each cartilage zone. Apoptosis of chondrocytes in AC sections was assessed by their expression of active caspase-3 using immunohistochemistry.
Results: The intensity of fibronectin expression varied significantly according to cartilage depth, with greater expression in the deep zone than in either the superficial or middle layers (P < 0.001). A significant positive association was found overall between intensity of fibronectin expression and chondrocyte apoptosis (r = 0.44, P = 0.0187). The data were also significant for superficial and deep zones (r = 0.44, P = 0.0239 and r = 0.42, P = 0.0279 respectively). Conversely, intensity of COMP expression did not show zonal differences and was un-associated with degree of apoptosis. However, COMP expression was significantly more intense in cartilage than fibronectin (P = 0.0007), and the correlation between overall intensity of COMP and fibronectin was statistically significant (r = 0.56, P = 0.0018).
Conclusion: The positive correlation between the incidence of apoptosis and expression of fibronectin, a key ECM molecule involved in communication between the chondrocyte and surrounding matrix, suggests that chondrocyte death by apoptosis may alter cartilage metabolism, supporting the role of this process in the pathogenesis of osteoarthritis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1756-185X.2011.01627.x | DOI Listing |
J Gene Med
January 2025
Department of Joint Surgery and Orthopedic Medicine, Shanghai Changzheng Hospital (The Second Affiliated Hospital of Naval Medical University), Shanghai, China.
Background And Objective: Osteoarthritis (OA) is characterized by progressive cartilage degeneration mediated by various molecular pathways, including inflammatory and autophagic processes. SET domain-containing lysine methyltransferase 7 (SETD7), a methyltransferase, has been implicated in OA pathology. This study investigates the expression pattern of SETD7 in OA and its role in promoting interleukin-1 beta (IL-1β)-induced chondrocyte injury through modulation of autophagy and inflammation.
View Article and Find Full Text PDFPhytomedicine
October 2024
Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang 110001, PR China. Electronic address:
Background: In the context of osteoarthritis (OA), a condition marked by joint degeneration, there is a notable absence of efficacious approaches to promote regenerative healing in chondrocytes. Novel therapeutic strategies like nanomicelles-hydrogel microspheres loaded with Astragalus polysaccharide (GelMA@APPA) offer promising avenues for promoting chondrocyte regeneration and mitigating OA progression.
Methods: Astragalus polysaccharide (APS) has been shown to induce chondrocyte proliferation and promote cartilage matrix secretion, demonstrating biological activity associated with chondrocyte regeneration.
J Orthop Surg Res
January 2025
Department of Orthopedics, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, 223800, Jiangsu, China.
Background: Osteoarthritis (OA) is a common type of degenerative arthropathy. Previous studies have demonstrated that circular RNAs (circRNAs) are involved in the progression of OA. This study aimed to investigate the role and associated mechanism of circ_0075048 in OA.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China.
Osteoarthritis (OA) is a degenerative joint disease that affects the cartilage and surrounding tissues. The transcription factor Kruppel-like family factor 9 (KLF9) has been identified as a regulator of tumorigenesis. However, its role in OA is still not fully understood.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Orthopedic Surgery, 920th Hospital of Joint Logistics Support Force of PLA, Kunming, China.
Osteoarthritis (OA) is a degenerative bone disease characterized by the destruction of joint cartilage and synovial inflammation, involving intricate immune regulation processes. Disulfidptosis, a novel form of programmed cell death, has recently been identified; however, the effects and roles of disulfidptosis-related genes (DR-DEGs) in OA remain unclear. We obtained six OA datasets from the GEO database, using four as training sets and two as validation sets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!