We report on a technique enabling electrical control of the contact silicidation process in silicon nanowire devices. Undoped silicon nanowires were contacted by pairs of nickel electrodes, and each contact was selectively silicided by means of the Joule effect. By a real-time monitoring of the nanowire electrical resistance during the contact silicidation process we were able to fabricate nickel-silicide/silicon/nickel-silicide devices with controlled silicon channel length down to 8 nm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nn202524j | DOI Listing |
Anal Chem
December 2024
School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, PR China.
Conventional wearable flexible sensing systems typically comprise three components: a flexible substrate that contacts the skin, a signal processing module, and a signal output module. These components function relatively independently, resulting in a complex system that lacks sufficient integration. Therefore, developing an integrated wearable flexible sensing system by combining the flexible substrate, the signal processing module, and the signal output module not only enhances performance and comfort, but also reduces manufacturing costs and the risk of failure.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2024
Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
This study explores the hydrogen generation potential via water-splitting reactions under UV-vis radiation by using a synergistic assembly of ZnO nanoparticles integrated with MoS, single-walled carbon nanotubes (SWNTs), and crystalline silicon nanowires (SiNWs) to create the MoS-SiNWs-SWNTs@ZnONPs nanocomposites. A comparative analysis of MoS synthesized through chemical and physical exfoliation methods revealed that the chemically exfoliated MoS exhibited superior performance, thereby being selected for all subsequent measurements. The nanostructured materials demonstrated exceptional surface characteristics, with specific surface areas exceeding 300 m g.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2024
Faculty of Physics, St. Petersburg State University, Universitetskaya Emb. 13B, 199034 St. Petersburg, Russia.
This study investigates the growth of gallium arsenide nanowires, using lead as a catalyst. Typically, nanowires are grown through the vapor-solid-liquid mechanism, where a key factor is the reduction in the nucleation barrier beneath the catalyst droplet. Arsenic exhibits limited solubility in conventional catalysts; however, this research explores an alternative scenario in which lead serves as a solvent for arsenic, while gallium and lead are immiscible liquids.
View Article and Find Full Text PDFGallium nitride-based nanowires (NWs) overcome heteroepitaxy limits, enabling GaN-on-silicon devices, and offer high sensitivity for detection, sensing, and photocatalysis. Additional nanowire coating enhances their performance, protects against photoadsorption, and enables control over structural and optical properties. In this work, we investigate core-shell GaN-(Al/Hf)O nanowires, which meet the aforementioned expectations.
View Article and Find Full Text PDFSensors (Basel)
November 2024
Electrical and Computer Engineering, McGill University, Montreal, QC H3A 0E9, Canada.
Silicon nanowires (SiNWs) have garnered considerable attention in the last few decades owing to their versatile applications. One extremely desirable aspect of fabricating SiNWs is controlling their dimensions and alignment. In addition, strict control of surface roughness or diameter modulation is another key parameter for enhanced performance in applications such as photovoltaics, thermoelectric devices, etc.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!