The photophysical properties of cyclocurcumin in various solvents are studied for the first time to shed light on the nonradiative processes of the parent compound, curcumin, which has a range of medicinal properties. Steady-state fluorescence and fluorescence-excitation spectra of cyclocurcumin in polar aprotic solvents are strongly dependent on excitation (λ(ex)) and emission (λ(em)) wavelength, respectively. The fluorescence quantum yield also depends on λ(ex) and increases with the viscosity of the medium. Time-resolved studies show nonexponential fluorescence decay in all solvents studied. The two fluorescence decay components of cyclocurcumin in alcohols exhibit a strong dependence on viscosity and temperature. NMR spectroscopy indicates that cyclocurcumin is entirely in the trans form with respect to the C6-C7 double bond in methanol, chloroform, and acetone. It is suggested that at least two conformational isomers about another single bond (C5-C6 or C7-C1″ or both) and that trans-to-cis isomerization about the C6-C7 double bond of these isomers provide the most likely means of rationalizing the steady-state spectra and the nonradiative decay mechanisms in both protic and aprotic polar solvents.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp200080sDOI Listing

Publication Analysis

Top Keywords

trans-to-cis isomerization
8
solvents studied
8
fluorescence decay
8
c6-c7 double
8
double bond
8
cyclocurcumin
5
photoinduced trans-to-cis
4
isomerization cyclocurcumin
4
cyclocurcumin photophysical
4
photophysical properties
4

Similar Publications

We introduce a family of membrane-targeted azobenzenes (MTs) with a push-pull character as a new tool for cell stimulation. These molecules are water soluble and spontaneously partition in the cell membrane. Upon light irradiation, they isomerize from trans to cis, changing the local charge distribution and thus stimulating the cell response.

View Article and Find Full Text PDF

G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors in humans. The binding and dissociation of ligands tunes the inherent conformational flexibility of these important drug targets towards distinct functional states. Here we show how to trigger and resolve protein-ligand interaction dynamics within the human adenosine A receptor.

View Article and Find Full Text PDF

Synthesis, Trans-Cis Photoisomerization, Fluorescence Decay Studies of Methoxy Ester Functionalized Alkoxy Side Chain Azobenzene Compounds and Their Photoluminescence Dynamics.

J Fluoresc

December 2024

Centre for Nano and Material Sciences, Jain (Deemed-to-be) University, Jain Global Campus, Ramanagaram, Bangalore, 562112, Kanakpuram, Karnataka, India.

In this study, a series of new methoxy ester functionalized core fluorinated, chloro-fluorinated azobenzene derivatives were synthesized. The molecular structures of the azobenzene derivatives (3a-3c and 4a-4c) were confirmed through various analytical methods, with variations in the alkoxy chain length on one end of the aromatic ring. Optical absorption studies of 3a, 3b revealed π-π* transitions around 368-392 nm.

View Article and Find Full Text PDF

Optical control of sphingolipid biosynthesis using photoswitchable sphingosines.

J Lipid Res

December 2024

Molecular Cell Biology Division, Department of Biology/Chemistry, Osnabrück University, 49076 Osnabrück, Germany; Center for Cellular Nanoanalytics, Osnabrück University, Artilleriestraße 77, 49076 Osnabrück, Germany. Electronic address:

Sphingolipid metabolism comprises a complex interconnected web of enzymes, metabolites and modes of regulation that influence a wide range of cellular and physiological processes. Deciphering the biological relevance of this network is challenging as numerous intermediates of sphingolipid metabolism are short-lived molecules with often opposing biological activities. Here, we introduce clickable, azobenzene-containing sphingosines, termed caSphs, as light-sensitive substrates for sphingolipid biosynthesis.

View Article and Find Full Text PDF

Azophotoswitches containing thiazole, isothiazole, thiadiazole, and isothiadiazole.

Org Biomol Chem

December 2024

Research Institute for Electronic Science, Hokkaido University, Kita20, Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0020, Japan.

We report a novel class of azophotoswitches incorporating various five-membered heteroaryl units such as thiazole, isothiazole, thiadiazole, and isothiadiazole. These azophotoswitches were developed through an initial screening of 24 compounds using DFT calculations to identify those with the wavelength of maximum absorption () at a long wavelength. Subsequently, eight selected azophotoswitches were synthesized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!