Several recent studies have provided evidence that LIN28, a cytoplasmic RNA-binding protein, inhibits the biogenesis of members of the let-7 microRNA family at the Dicer step in both mammals and Caenorhabditis elegans. However, the precise mechanism of inhibition is still poorly understood. Here we report on an in vitro study, which combined RNase footprinting, gel shift binding assays, and processing assays, to investigate the molecular basis and function of the interaction between the native let-7g precursor (pre-let-7g) and LIN28. We have mapped the structure of pre-let-7g and identified some regions of the terminal loop of pre-let-7g that physically interact with LIN28. We have also identified a conformational change upon LIN28 binding that results in the unwinding of an otherwise double-stranded region at the Dicer processing site of pre-let-7g. Furthermore, we showed that a mutant pre-let-7g that displays an open upper stem inhibited pre-let-7g Dicer processing to the same extent as LIN28. The data support a mechanism by which LIN28 can directly inhibit let-7g biogenesis at the Dicer processing step.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3361669PMC
http://dx.doi.org/10.1021/bi200851dDOI Listing

Publication Analysis

Top Keywords

dicer processing
16
pre-let-7g
7
lin28
6
dicer
5
processing
5
lin28-dependent structural
4
structural change
4
change pre-let-7g
4
pre-let-7g directly
4
directly inhibits
4

Similar Publications

MicroRNAs (miRNAs) play a significant role in tumor progression, and regulating miRNA expression with small molecules may offer a new approach to cancer therapy. Among them, miRNA-20b has been found to be dysregulated in several cancers, including nonsmall cell lung cancer (NSCLC). Herein, an in silico high-throughput computer screen was conducted to identify small molecules that downregulate miR-20b using the three-dimensional structure of the Dicer binding site on pre-miR-20b.

View Article and Find Full Text PDF

Transposon-triggered epigenetic chromatin dynamics modulate EFR-related pathogen response.

Nat Struct Mol Biol

December 2024

Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.

Infectious diseases drive wild plant evolution and impact crop yield. Plants, like animals, sense biotic threats through pattern recognition receptors (PRRs). Overly robust immune responses can harm plants; thus, understanding the tuning of defense response mechanisms is crucial for developing pathogen-resistant crops.

View Article and Find Full Text PDF

The biogenesis and regulation of animal microRNAs.

Nat Rev Mol Cell Biol

December 2024

Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea.

MicroRNAs (miRNAs) are small, yet profoundly influential, non-coding RNAs that base-pair with mRNAs to induce RNA silencing. Although the basic principles of miRNA biogenesis and function have been established, recent breakthroughs have yielded important new insights into the molecular mechanisms of miRNA biogenesis. In this Review, we discuss the metazoan miRNA biogenesis pathway step-by-step, focusing on the key biogenesis machinery, including the Drosha-DGCR8 complex (Microprocessor), exportin-5, Dicer and Argonaute.

View Article and Find Full Text PDF

Canonical small interfering RNAs (siRNAs) are processed from double-stranded RNA (dsRNA) by Dicer and associate with Argonautes to direct RNA silencing. In , 22G-RNAs and 26G-RNAs are often referred to as siRNAs but display distinct characteristics. For example, 22G-RNAs do not originate from dsRNA and do not depend on Dicer, whereas 26G-RNAs require Dicer but derive from an atypical RNA duplex and are produced exclusively antisense to their messenger RNA (mRNA) templates.

View Article and Find Full Text PDF
Article Synopsis
  • MicroRNAs, specifically miR21, play an essential role in regulating mRNA activity and are linked to cancer development and drug resistance, making them important targets for drug design.
  • This study focuses on the structural dynamics of pre-miR21, particularly how adenine29 influences its interaction with the Dicer enzyme, which is crucial for its processing.
  • Using a new technique for simulating structural changes, the research investigates how a cyclic peptide, L50, affects the flexibility of pre-miR21, potentially leading to improved methods for designing drugs that target this molecule.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!