The STAT proteins (signal transducers and activators of transcription) are transcription factors mediating cytokine/growth factor signaling, which play important role in controlling cell cycle progression and apoptosis. In many cancer cell lines and tumors (including gliomas) the STAT proteins (in particular Stats 1, 3, and 5) are persistently activated. In this study, we employed DNA decoys, siRNAs, and protein overexpression, to elucidate the role of Stat1 and Stat3 in regulation of expression of endogenous Stat3-target genes (Bcl2l1, Myc, Ccnd1) and a Stat-driven reporter plasmid, in rat C6 glioma cells. The results obtained with the decoys and siRNA suggest that in proliferating C6 cells, Stat1 supports the basal expression of Bcl2l1, while the decoy and chromatin immunoprecipitation results suggest it also plays a similar role for Myc. In the Stat-driven reporter system, overexpression of Stat1 stimulated, while overexpression of Stat3 inhibited the reporter gene expression. The level of Stat1 phosphorylation observed under basal conditions in proliferating glioma C6 cells is very low. Therefore, we speculate that it is the activity of the unphosphorylated Stat1 that is inhibited by Stat1 decoy or Stat1 siRNA. Taken together, our results demonstrate that it is Stat1 not Stat3 that maintains the expression of Bcl2l1 and possibly Myc in proliferating glioma C6 cells. An established paradigm is that Stat3 exerts a pro-survival and potentially oncogenic effects, while Stat1 is mainly associated with the immune response. Our results add to a number of reports that challenge this paradigm.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcb.23305DOI Listing

Publication Analysis

Top Keywords

glioma cells
16
stat1
10
stat3-target genes
8
stat proteins
8
stat1 stat3
8
bcl2l1 myc
8
stat-driven reporter
8
expression bcl2l1
8
proliferating glioma
8
expression
5

Similar Publications

IDO1 inhibits ferroptosis by regulating FTO-mediated m6A methylation and SLC7A11 mRNA stability during glioblastoma progression.

Cell Death Discov

January 2025

State Key Laboratory of Functions and Applications of Medicinal Plants, School of Basic Medical Sciences, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, China.

Indoleamine 2, 3-dioxygenase 1 (IDO1) has been recognized as an enzyme involved in tryptophan catabolism with immunosuppressive ability. This study determined to investigate the impact of IDO1 on glioblastoma multiforme (GBM) cells. Here, we showed that the expression of IDO1 was markedly increased in patients with glioma and associated with GBM progression.

View Article and Find Full Text PDF

Stereotactic injection of murine brain tumor cells for neuro-oncology studies.

Methods Cell Biol

January 2025

Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States. Electronic address:

Glioblastomas (GBMs) are the most common and aggressive brain tumors, with a poor prognosis. Effective preclinical models are crucial to investigate GBM biology and develop novel treatments. Syngeneic models, which consist in injecting murine GBM cells into mice with a similar genetic background, offer reproducibility, cost-effectiveness, and an intact immune system, making them ideal for immunotherapy research.

View Article and Find Full Text PDF

Background: B7 homolog 3 (B7-H3), an overexpressed antigen across multiple solid cancers, represents a promising target for CAR T cell therapy. This study investigated the expression of B7-H3 across various solid tumors and developed novel monoclonal antibodies (mAbs) targeting B7-H3 for CAR T cell therapy.

Methods: Expression of B7-H3 across various solid tumors was evaluated using RNA-seq data from TCGA, TARGET, and GTEx datasets and by flow cytometry staining.

View Article and Find Full Text PDF

Gene Therapy for Glioblastoma Multiforme.

Viruses

January 2025

Surgical Neurology Branch, NINDS, NIH 10 Center Drive, Bethesda, MD 20892, USA.

Glioblastoma multiforme (GBM) is a devastating, aggressive primary brain tumor with poor patient outcomes and a five-year survival of less than 10%. Significant limitations to effective GBM treatment include poor drug delivery across the blood-brain barrier, drug resistance, and complex genetic tumor alterations. Gene therapy uses a mechanism different from other GBM therapies to reduce tumor growth and enhance antitumor immunity.

View Article and Find Full Text PDF

The two obstacles for treating glioma are the skull and the blood brain-barrier (BBB), the first of which forms a physical shield that increases the difficulties of traditional surgery or radiotherapy, while the latter prevents antitumor drugs reaching tumor sites. To conquer these issues, we take advantage of the high penetrating ability of sonodynamic therapy (SDT), combined with a novel nanocomplex that can easily pass the BBB. Through ultrasonic polymerization, the amphiphilic peptides (CGRRGDS) were self-assembled as a spherical shell encapsulating a sonosensitizer Rose Bengal (RB) and a plant-derived compound, sulforaphane (SFN), to form the nanocomplex SFN@RB@SPM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!