Previous studies revealed that polydatin, a natural small compound, possessed protective effect against ischemia/reperfusion injury and inflammation. However, the action and molecular mechanism of its potent anti-cancer activity remain poorly understood. In the present study, polydatin significantly killed several human tumor cell lines in a dose- and time-dependent manner. The compound also dose-dependently caused mitochondrial apoptosis in human nasopharyngeal carcinoma CNE cells. In addition, polydatin triggered endoplasmic reticulum (ER) stress and down-regulated the phosphorylation of Akt in CNE cells, while knock-down of CCAAT/enhancer-binding protein homologous protein (CHOP) dramatically abrogated the inactivation of Akt and reversed the pro-apoptotic effect of polydatin. Furthermore, polydatin provoked the generation of reactive oxygen species in CNE cells, while the antioxidant N-acetyl cysteine almost completely blocked the activation of ER stress and apoptosis, suggesting polydatin-induced reactive oxygen species is an early event that triggers ER stress mitochondrial apoptotic pathways in CNE cells. Taken together, these findings strongly suggest that polydatin might be a promising anti-tumor drug and our data provide the molecular theoretical basis for clinical application of polydatin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcb.23303 | DOI Listing |
Discov Oncol
January 2025
Department of Ear, Nose and Throat (ENT), The First People's Hospital of Jiande, No. 599 Yanzhou Avenue, Xin'anjiang Street, Jiande, 311600, Zhejiang, China.
Objective: To screen potential differentially expressed genes related to immune function in nasopharyngeal carcinoma through an online database, and to verify their mechanism of action, so as to provide a reference for the diagnosis and treatment of nasopharyngeal carcinoma in the future.
Methods: Differentially expressed genes were analyzed from the GSE227541 dataset, and functional enrichment analysis was conducted. With mucin 5B, oligomeric mucus/gel-forming as the focus, the correlation between its expression and immune indexes was analyzed by using the TIMER database.
Malays J Pathol
December 2024
Universiti Tunku Abdul Rahman, M. Kandiah Faculty of Medicine and Health Sciences, Department of Pre-clinical Sciences, Bandar Sungai Long, 43000, Kajang, Selangor, Malaysia.
Introduction: The current first-line therapy for nasopharyngeal carcinoma (NPC) is often associated with long-term complications. Oncolytic measles virus (MV) therapy offers a promising alternative to cancer therapy. This study aims to investigate the efficacy of MV in killing NPC cells in vitro, both with or without resistance to radiation and drug therapy.
View Article and Find Full Text PDFOrg Biomol Chem
December 2024
College of Marine Sciences, Beibu Gulf University, Qinzhou, China.
Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi
November 2024
Department of Head and Neck Surgery,the Tumor Hospital of Yunnan Province,Kunming,650118,China.
To investigate the effect of phosphorylated HSP27 on the proliferation and metastasis of nasopharyngeal carcinoma and its molecular mechanism. ①Western blot assay was used to detect the expression levels of HSP27 and p-HSP27 in CNE1 and CNE2 cells of nasopharyngeal carcinoma. Inhibited the phosphorylation of HSP27, Transwell assay detected the metastasis ability of nasopharyngeal carcinoma cells.
View Article and Find Full Text PDFInt J Biol Macromol
September 2024
The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, No. 6 Ankang avenue, Guian New District, 561113, Guizhou, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!