Lactobacillus acidophilus NCFM is a probiotic microbe with the ability to survive passage to the -gastrointestinal tract, interact intimately with the host and induce immune responses. The genome of NCFM has been determined and the bacterium is genetically accessible. Therefore, L. acidophilus has excellent potential for use as a vaccine delivery vehicle to express antigens at mucosal surfaces. Plasmids, commonly used to carry antigen encoding genes, are inherently unstable and require constant selection by antibiotics, which can be problematic for in vivo studies and clinical trials. Chromosomal expression of gene cassettes encoding antigens offers enhanced genetic stability by eliminating requirements for marker selection. This work illustrates the integration and inducible expression of the reporter gene gusA3, -encoding a β-glucuronidase (GusA3), in the L. acidophilus chromosome. A previously described upp-counterselectable gene replacement system was used to direct insertion of the gusA3 gene into an intergenic chromosomal location downstream of lacZ (LBA1462), encoding a β-galactosidase. The transcriptional activity of integrated gusA3 was evaluated by GUS activity assays using 4-methyl-umbelliferyl-β-D: -glucuronide (MUG) and was determined to be one to two orders of magnitude higher than the GusA3-negative parent, NCK1909. The successful chromosomal integration and expression of GusA3 demonstrate the potential of this method for higher levels of inducible gene expression in L. acidophilus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-61779-197-0_22 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!