Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The blood brain barrier regulates the transport of chemicals from entering and leaving the brain. Brain capillaries establish the barrier and restrict transport into the brain by providing a physical and chemical barrier. The physical barrier is due to tight membrane junctions separating the capillary endothelial cells resulting in limited paracellular transport. The chemical barrier is due to the expression of multidrug transporters that mediate the efflux of a broad range of hydrophobic chemicals. Because of the unusual nutrient demands of the brain, this limited permeability is compensated by the expression of a large number of transporters that are responsive to the metabolic demands of the brain. Consequently, the blood brain barrier indirectly regulates brain function by directly controlling the uptake of nutrients. Two widely used methods for studying the blood brain are a cell culture model using rat, pig, or cow brain endothelial cells and isolated microvessels. The cell culture model is more popular likely because it is easier to use and less costly compared to isolated microvessels. In some laboratories, brain endothelial cells are cocultured with astrocyte- or astroglial-conditioned media. The endothelial cells express many of the transporters displayed in vivo but not all. Although cell culture models vary, none express the tight barrier observed in vivo. Because microvessels are isolated directly from the brain, they express all of the transporters displayed in vivo. Their disadvantage is that the preparation is laborious, requires animals, and has a shorter lifespan in vitro. We present an approach in which transport is first verified in isolated microvessels, and then the mechanism is studied in cell culture.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-61779-170-3_10 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!