A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

In vitro models to study the blood brain barrier. | LitMetric

In vitro models to study the blood brain barrier.

Methods Mol Biol

Kennedy Krieger Institute and Center in Alternatives in Animal Testing, Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.

Published: November 2011

The blood brain barrier regulates the transport of chemicals from entering and leaving the brain. Brain capillaries establish the barrier and restrict transport into the brain by providing a physical and chemical barrier. The physical barrier is due to tight membrane junctions separating the capillary endothelial cells resulting in limited paracellular transport. The chemical barrier is due to the expression of multidrug transporters that mediate the efflux of a broad range of hydrophobic chemicals. Because of the unusual nutrient demands of the brain, this limited permeability is compensated by the expression of a large number of transporters that are responsive to the metabolic demands of the brain. Consequently, the blood brain barrier indirectly regulates brain function by directly controlling the uptake of nutrients. Two widely used methods for studying the blood brain are a cell culture model using rat, pig, or cow brain endothelial cells and isolated microvessels. The cell culture model is more popular likely because it is easier to use and less costly compared to isolated microvessels. In some laboratories, brain endothelial cells are cocultured with astrocyte- or astroglial-conditioned media. The endothelial cells express many of the transporters displayed in vivo but not all. Although cell culture models vary, none express the tight barrier observed in vivo. Because microvessels are isolated directly from the brain, they express all of the transporters displayed in vivo. Their disadvantage is that the preparation is laborious, requires animals, and has a shorter lifespan in vitro. We present an approach in which transport is first verified in isolated microvessels, and then the mechanism is studied in cell culture.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-61779-170-3_10DOI Listing

Publication Analysis

Top Keywords

blood brain
16
endothelial cells
16
cell culture
16
brain
13
brain barrier
12
isolated microvessels
12
barrier
8
chemical barrier
8
demands brain
8
culture model
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!