Determination of metal interactions with the chaperone Hspa5 in human astrocytoma cells and rat astrocyte primary cultures.

Methods Mol Biol

Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.

Published: November 2011

Molecular chaperones assist the folding of nascent proteins during translation into their correct conformations. Neurotoxic metals such as copper (Cu) and lead (Pb) may produce a deficiency in chaperone function that compromises protein secretion and exacerbates protein aggregation, potentially promoting neurodegenerative diseases that exhibit protein aggregation. Because astrocytes function as depots in the brain for certain metals, including Cu and Pb, the interaction of metals with chaperones in these cells is of interest. Furthermore, Pb and Cu bind strongly to the molecular chaperone heat shock 70 kDa protein Hspa5, also known as glucose-regulated protein 78 (Grp78) or immunoglobulin-binding protein (BiP). This chapter describes methods for expressing fluorescent chimeric proteins in astrocytes and astrocytoma cells in order to examine the metal-induced cytosolic redistribution of Hspa5, as well as associated effects on the secretion of interleukin-6 (IL-6).

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-61779-170-3_3DOI Listing

Publication Analysis

Top Keywords

astrocytoma cells
8
protein aggregation
8
protein
6
determination metal
4
metal interactions
4
interactions chaperone
4
chaperone hspa5
4
hspa5 human
4
human astrocytoma
4
cells rat
4

Similar Publications

Glutaminase controls the first step in glutaminolysis, impacting bioenergetics, biosynthesis and oxidative stress. Two isoenzymes exist in humans, GLS and GLS2. GLS is considered prooncogenic and overexpressed in many tumours, while GLS2 may act as prooncogenic or as a tumour suppressor.

View Article and Find Full Text PDF

This study aimed to investigate β-Caryophyllene (BCA) pharmacokinetics as well as the potential antitumor activity and mechanism of action of BCA and eugenol (EU), alone or in combination, in U87 glioblastoma (GB) cells. The BCA pharmacokinetic was studied by evaluating its concentration profiles in rat blood and cerebrospinal fluid after oral and intravenous administration. EU and BCA antitumor mechanisms were assessed by comparing their effects in U87 GB cells and non-tumoral HMC3 cells.

View Article and Find Full Text PDF

Glioblastoma (GB) is one of the most aggressive and treatment-resistant cancers due to its complex tumor microenvironment (TME). We previously showed that GB progression is dependent on the aberrant induction of chaperone-mediated autophagy (CMA) in pericytes (PCs), which promotes TME immunosuppression through the PC secretome. The secretion of extracellular matrix (ECM) proteins with anti-tumor (Lumican) and pro-tumoral (Osteopontin, OPN) properties was shown to be dependent on the regulation of GB-induced CMA in PCs.

View Article and Find Full Text PDF

Glioblastomas (GBM) are malignant tumours with poor prognosis. Treatment involves chemotherapy and/or radiotherapy; however, there is currently no standard treatment for recurrence, and prognosis remains unfavourable. Inflammatory mediators and microRNAs (miRNAs) influence the aggressiveness of GBM, being involved in the communication with the cells of the tumour parenchyma, including microglia/macrophages, and maintaining an immunosuppressive microenvironment.

View Article and Find Full Text PDF

Effect of SNORD113-3/ADAR2 on glycolipid metabolism in glioblastoma via A-to-I editing of PHKA2.

Cell Mol Biol Lett

January 2025

Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, 110004, China.

Background: Glioblastoma multiforme (GBM) is a highly aggressive brain tumor, characterized by its poor prognosis. Glycolipid metabolism is strongly associated with GBM development and malignant behavior. However, the precise functions of snoRNAs and ADARs in glycolipid metabolism within GBM cells remain elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!