Background: In the field of Plastic Reconstructive Surgery the development of new innovative matrices for skin repair is in urgent need. The ideal biomaterial should promote attachment, proliferation and growth of cells. Additionally, it should degrade in an appropriate time period without releasing harmful substances, but not exert a pathological immune response. Spider dragline silk from Nephila spp meets these demands to a large extent.

Methodology/principal Findings: Native spider dragline silk, harvested directly out of Nephila spp spiders, was woven on steel frames. Constructs were sterilized and seeded with fibroblasts. After two weeks of cultivating single fibroblasts, keratinocytes were added to generate a bilayered skin model, consisting of dermis and epidermis equivalents. For the next three weeks, constructs in co-culture were lifted on an originally designed setup for air/liquid interface cultivation. After the culturing period, constructs were embedded in paraffin with an especially developed program for spidersilk to avoid supercontraction. Paraffin cross-sections were stained in Haematoxylin & Eosin (H&E) for microscopic analyses.

Conclusion/significance: Native spider dragline silk woven on steel frames provides a suitable matrix for 3 dimensional skin cell culturing. Both fibroblasts and keratinocytes cell lines adhere to the spider silk fibres and proliferate. Guided by the spider silk fibres, they sprout into the meshes and reach confluence in at most one week. A well-balanced, bilayered cocultivation in two continuously separated strata can be achieved by serum reduction, changing the medium conditions and the cultivation period at the air/liquid interphase. Therefore spider silk appears to be a promising biomaterial for the enhancement of skin regeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3144206PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0021833PLOS

Publication Analysis

Top Keywords

spider silk
16
silk fibres
12
spider dragline
12
dragline silk
12
skin cell
8
cell lines
8
nephila spp
8
native spider
8
woven steel
8
steel frames
8

Similar Publications

Spider silk, especially dragline silk from golden silk spiders (Trichonephila clavipes), is an excellent natural material with remarkable mechanical properties. Many studies have focused on the use of plants as biofactories for the production of recombinant spider silk. However, the effects of this material on the mechanical properties or physiology of transgenic plants remain poorly understood.

View Article and Find Full Text PDF

Molecular and Proteomic Analyses of Effects of Cadmium Exposure on the Silk Glands of .

Int J Mol Sci

January 2025

Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA.

Cadmium (Cd) is a pervasive heavy metal pollutant released into the environment through industrial activities such as mining, smelting, and agricultural runoff. This study aimed to investigate the molecular and metabolic impacts of Cd exposure on the silk glands of , a species renowned for producing silk with exceptional mechanical properties. Cd accumulation in spider bodies and silk glands was significantly higher in the low- and high-Cd groups compared to controls, with a dose- and time-dependent increase.

View Article and Find Full Text PDF

Characterization of the second type of tubuliform spidroin (TuSp1 variant 2) elucidates the essential role of cysteine within the repetitive domain in liquid-liquid phase separation-mediated silk formation and the mechanical properties of silk fibers.

Int J Biol Macromol

January 2025

Department of Ophthalmology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China. Electronic address:

Orb-weaver spiders utilize morphologically differentiated abdominal glands to produce up to seven types of silks throughout their life cycles. Tubuliform silk is unique as it serves to protect developing embryos and hatchlings. However, our current understanding of the relationship between structure and function of tubuliform silk protein remains limited.

View Article and Find Full Text PDF

Hydrogen-bond-driven 1D assembly of carbon nanotubes dispersed in organic solvents remains challenging owing to difficulties associated with achieving high oxidation levels and uniform dispersion. Here, we introduced a bioinspired wet-spinning method that utilizes highly oxidized single-walled carbon nanotubes dispersed in organic solvents without superacid or dispersants. By incorporating submicrometer-sized graphene oxide nanosheets, we facilitated the ejection of 1.

View Article and Find Full Text PDF

Spider Fungi: New species of and in the aerial rhizomorph web-maker guild in Amazonia.

Fungal Syst Evol

December 2024

Programa de Pós-graduação em Botânica - DIPO 2, Instituto Nacional de Pesquisas da Amazônia - Inpa, Av. André Araújo 2936, 69067-375, Manaus, AM, Brazil.

Rhizomorphs are hair- or wire-like melanized structures with structural differentiation analogous to plant roots that help fungi spread over an area and find food resources. Some species of multiple groups of the and the produce different types of rhizomorphs. In the , the structures are largely found in , particularly in the , , and .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!