Based on the previous results concerning electron transfer processes in biological substances, it was of interest to investigate if hormone transients resulting by e.g. electron emission can be regenerated.The presented results prove for the first time that the hormone transients originating by the electron emission process can be successfully regenerated by the transfer of electrons from a potent electron donor, such as vitamin C (VitC). Investigations were performed using progesterone (PRG), testosterone (TES) and estrone (E1) as representatives of hormones. By irradiation with monochromatic UV light (λ=254 nm) in a media of 40% water and 60% ethanol, the degradation as well as the regeneration of the hormones was studied with each hormone individually and in the mixture with VitC as a function of the absorbed UV dose, using HPLC. Calculated from the obtained initial yields, the determined regeneration of PRG amounted to 52.7%, for TES to 58.6% and for E1 to 90.9%. The consumption of VitC was determined in the same way.The reported results concerning the regeneration of hormones by the transfer of electrons from an electron donor offer a new, promising method for the therapy with hormones. As a consequence of the regeneration of hormones, a decreased formation of carcinogenic metabolites is expected.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3134113PMC
http://dx.doi.org/10.1016/j.radphyschem.2011.04.001DOI Listing

Publication Analysis

Top Keywords

regeneration hormones
16
electron transfer
8
transfer processes
8
hormone transients
8
electron emission
8
transfer electrons
8
electron donor
8
hormones
6
electron
6
photo-induced regeneration
4

Similar Publications

An overview of recent progress in the molecular mechanisms and key biological macromolecules involved in limb regeneration of decapods.

Int J Biol Macromol

December 2024

College of Marine Science, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf Ocean Development Research Center, Beibu Gulf University, Qinzhou, Guangxi, China. Electronic address:

Understanding the molecular mechanisms of limb regeneration in decapods can significantly enhance aquaculture production by improving survival and growth, as well as facilitating the development of lab-grown crustacean meat as a sustainable protein source. This review explores the molecular mechanisms of decapod limb regeneration, focusing on the key signaling pathways, genes, and proteins involved in this process. The initial stages of regeneration involve immune response and hemolymph coagulation, which are regulated via signaling pathways such as Toll, MAPK, IMD, and JAK/STAT.

View Article and Find Full Text PDF

Background/aims: Gestational Diabetes Mellitus (GDM) is a common complication during pregnancy, defined as diabetes diagnosed in the second or third trimester, often asymptomatic. This study investigates the therapeutic potential of olive leaf extracts and stem cells in mitigating GDM-induced complications, particularly focusing on renal function, oxidative stress, and pancreatic cell regeneration.

Methods: Measurements were made in gravid female rats with or without intraperitoneal administration of Streptozotocin (35 mg/kg body weight).

View Article and Find Full Text PDF

Sclerostin and OPG/RANK-L system take part in bone remodeling in patients with acromegaly.

Front Endocrinol (Lausanne)

January 2025

Department and Clinic of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, Wrocław, Poland.

Introduction: Acromegaly is a disease characterized by enhanced bone turnover with persistently high vertebral fracture risk. Sclerostin is a glycoprotein, which acts as an inhibitor of bone formation and activates osteoclast-mediated bone resorption. The osteoprotegerin (OPG)/receptor activator for the nuclear factor κ B ligand (RANK-L) system is crucial for controlling bone metabolism.

View Article and Find Full Text PDF

Background: Infantile spasms syndrome is a severe form of infantile epilepsy. It is commonly treated with hormonal therapies or vigabatrin, either alone or in combination. This study aimed to assess the efficacy of these treatment modalities and explore associations with aetiology, and pre-existing developmental delay.

View Article and Find Full Text PDF

Thyroid hormone receptor- and stage-dependent transcriptome changes affect the initial period of Xenopus tropicalis tail regeneration.

BMC Genomics

December 2024

Section On Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.

Background: Thyroid hormone (T3) has an inhibitory effect on tissue/organ regeneration. It is still elusive how T3 regulates this process. It is well established that the developmental effects of T3 are primarily mediated through transcriptional regulation by thyroid hormone receptors (TRs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!