The capacity of opioids to alleviate inflammatory pain is negatively regulated by the glutamate-binding N-methyl-D-aspartate receptor (NMDAR). Increased activity of this receptor complicates the clinical use of opioids to treat persistent neuropathic pain. Immunohistochemical and ultrastructural studies have demonstrated the coexistence of both receptors within single neurons of the CNS, including those in the mesencephalic periaqueductal gray (PAG), a region that is implicated in the opioid control of nociception. We now report that mu-opioid receptors (MOR) and NMDAR NR1 subunits associate in the postsynaptic structures of PAG neurons. Morphine disrupts this complex by protein kinase-C (PKC)-mediated phosphorylation of the NR1 C1 segment and potentiates the NMDAR-CaMKII, pathway that is implicated in morphine tolerance. Inhibition of PKC, but not PKA or GRK2, restored the MOR-NR1 association and rescued the analgesic effect of morphine as well. The administration of N-methyl-D-aspartic acid separated the MOR-NR1 complex, increased MOR Ser phosphorylation, reduced the association of the MOR with G-proteins, and diminished the antinociceptive capacity of morphine. Inhibition of PKA, but not PKC, CaMKII, or GRK2, blocked these effects and preserved morphine antinociception. Thus, the opposing activities of the MOR and NMDAR in pain control affect their relation within neurons of structures such as the PAG. This finding could be exploited in developing bifunctional drugs that would act exclusively on those NMDARs associated with MORs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3242298 | PMC |
http://dx.doi.org/10.1038/npp.2011.155 | DOI Listing |
Sci Rep
January 2025
Department of Physical Therapy, Faculty of Rehabilitation, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata, 950-3198, Japan.
Since clinical features of chronic muscle pain originating from the low back and limbs are different (higher prevalence and broader/duller sensation of low back muscle pain than limb muscle pain), spinal and/or supraspinal projection of nociceptive information could differ between the two muscles. We tested this hypothesis using c-Fos immunohistochemistry combined with retrograde-labeling of dorsal horn (DH) neurons projecting to ventrolateral periaqueductal grey (vlPAG) or ventral posterolateral nucleus of the thalamus (VPL) by fluorogold (FG) injections into the vlPAG or VPL. C-Fos expression in the DH was induced by injecting 5% formalin into the multifidus (MF, low back) or gastrocnemius-soleus (GS, limb) muscle.
View Article and Find Full Text PDFNeuroscience
January 2025
Center for Neuroscience, Indian Institute of Science, Bengaluru 560012, India. Electronic address:
Pain and itch are unpleasant and distinct sensations that give rise to behaviors such as reflexive withdrawal and scratching in humans and mice. Interestingly, it has been observed that pain modulates itch through the neural circuits housed in the brain and spinal cord. However, we have yet to fully understand the identities and mechanisms by which specific neural circuits mediate pain-induced modulation of itch.
View Article and Find Full Text PDFTheranostics
January 2025
Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
: The periaqueductal gray (PAG) is a central hub for the regulation of aggression, whereas the circuitry and molecular mechanisms underlying this regulation remain uncharacterized. In this study, we investigate the role of a distinct cell type, -expressing (Tac2) neurons, located in the dorsomedial PAG (dmPAG) and their modulation of aggressive behavior in mice. : We combined activity mapping, Ca recording, chemogenetic and pharmacological manipulation, and a viral-based translating ribosome affinity purification (TRAP) profiling using a mouse resident-intruder model.
View Article and Find Full Text PDFThe landscape of therapeutic deep brain stimulation (DBS) for locomotor function recovery is rapidly evolving. This review provides an overview of electrical neuromodulation effects on spinal cord injury (SCI), focusing on DBS for motor functional recovery in human and animal models. We highlight research providing insight into underlying cellular and molecular mechanisms.
View Article and Find Full Text PDFCell Rep
December 2024
Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China. Electronic address:
Itch serves as a self-protection mechanism against harmful external agents, whereas uncontrolled and persistent itch severely influences the quality of life of patients and aggravates their diseases. Unfortunately, the existing treatments are largely ineffective. The current difficulty in treatment may be closely related to the fact that the central neural mechanisms underlying itch processing, especially descending inhibition of itch, are poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!