The mechanism underlying the potentially beneficial effects of the "gentler" modes of ventilation on chronic lung disease (CLD) of the premature infant is not known. We have previously demonstrated that alveolar parathyroid hormone-related protein-peroxisome proliferator-activated receptorγ (PTHrP-PPARγ) signaling is critically important in alveolar formation, and this signaling pathway is disrupted in hyperoxia- and/or volutrauma-induced neonatal rat lung injury. Whether the same paradigm is also applicable to CLD, resulting from prolonged intermittent mandatory ventilation (IMV), and whether differential effects of the mode of ventilation on the PTHrP-PPARγ signaling pathway explain the potential benefits of the "gentler" modes of ventilation are not known. Using a well-established preterm lamb model of neonatal CLD, we tested the hypothesis that ventilatory support using high-frequency nasal ventilation (HFNV) promotes alveolar PTHrP-PPARγ signaling, whereas IMV inhibits it. Preterm lambs managed by HFNV or IMV for 21 d following preterm delivery at 132-d gestation were studied by Western hybridization and immunofluorescence labeling for key markers of alveolar homeostasis and injury/repair. In lambs managed by IMV, the abundance of key homeostatic alveolar epithelial-mesenchymal markers was reduced, whereas it was significantly increased in the HFNV group, providing a potential molecular mechanism by which "gentler" modes of ventilation reduce neonatal CLD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3189277 | PMC |
http://dx.doi.org/10.1203/PDR.0b013e31822f58a1 | DOI Listing |
Sci Rep
June 2023
Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, 44919, Republic of Korea.
Hydrogels immobilizing nitrifying bacteria with different thicknesses of 0.55 and 1.13 cm (HG-0.
View Article and Find Full Text PDFEnviron Toxicol Chem
July 2021
Laboratory of Environmental Toxicology and Aquatic Ecology, Environmental Toxicology Unit, Ghent University, Ghent, East Flanders, Belgium.
The global consumption of human antidepressants has steadily increased over the last years. The most widely prescribed antidepressants are the selective serotonin reuptake inhibitors (SSRIs), which have been linked to various life-history effects in nontarget organisms. We investigated the effects of the SSRI citalopram hydrobromide on the life history of the copepod Nitocra spinipes.
View Article and Find Full Text PDFChildren (Basel)
February 2021
Division of Neonatology, Department of Pediatrics, Cooper Medical School of Rowan University, The Children's Regional Hospital at Cooper, Camden, NJ 08103, USA.
Recent advances in neonatology have led to the increased survival of extremely low-birth weight infants. However, the incidence of bronchopulmonary dysplasia (BPD) has not improved proportionally, partly due to increased survival of extremely premature infants born at the late-canalicular stage of lung development. Due to minimal surfactant production at this stage, these infants are at risk for severe respiratory distress syndrome, needing prolonged ventilation.
View Article and Find Full Text PDFF1000Res
October 2020
Neonatology Research Laboratory, Education and Research Building, Cooper University Hospital, Camden, NJ, USA.
In the current era, the survival of extremely low-birth-weight infants has increased considerably because of new advances in technology; however, these infants often develop chronic dysfunction of the lung, which is called bronchopulmonary dysplasia (BPD). BPD remains an important cause of neonatal mortality and morbidity despite newer and gentler modes of ventilation. BPD results from the exposure of immature lungs to various antenatal and postnatal factors that lead to an impairment in lung development and aberrant growth of lung parenchyma and vasculature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!