We investigate the photoresistance of a magnetically confined quantum wire in which microwave-coupled edge channels interfere at two pinning sites in the fashion of a Mach-Zehnder interferometer. The conductance is strongly enhanced by microwave power at B = 0 and develops a complex series of oscillations when the magnetic confinement increases. Both results are quantitatively explained by the activation of forward scattering in a multimode magnetically confined quantum wire. By varying the strength of the magnetic confinement we are able to tune the phase of electrons in the arms of the interferometer. Quantum interferences which develop between pinning sites explain the oscillations of the conductance as a function of the magnetic field. A fit of the data gives the distance between pinning sites as 11 µm. This result suggests that quantum coherence is conserved over a distance three times longer than the electron mean free path.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0953-8984/21/2/025303DOI Listing

Publication Analysis

Top Keywords

magnetically confined
12
confined quantum
12
pinning sites
12
edge channels
8
quantum wire
8
magnetic confinement
8
quantum
6
quantum interference
4
magnetic
4
interference magnetic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!