We investigate the photoresistance of a magnetically confined quantum wire in which microwave-coupled edge channels interfere at two pinning sites in the fashion of a Mach-Zehnder interferometer. The conductance is strongly enhanced by microwave power at B = 0 and develops a complex series of oscillations when the magnetic confinement increases. Both results are quantitatively explained by the activation of forward scattering in a multimode magnetically confined quantum wire. By varying the strength of the magnetic confinement we are able to tune the phase of electrons in the arms of the interferometer. Quantum interferences which develop between pinning sites explain the oscillations of the conductance as a function of the magnetic field. A fit of the data gives the distance between pinning sites as 11 µm. This result suggests that quantum coherence is conserved over a distance three times longer than the electron mean free path.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0953-8984/21/2/025303 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!