Neuroinflammation plays a key role in the pathogenesis of Alzheimer's disease and related tauopathies. We have previously shown that expression of nonmutated human truncated τ (151-391, 4R), derived from sporadic Alzheimer's disease, induced neurofibrillary degeneration accompanied by microglial and astroglial activation in the brain of transgenic rats. The aim of the current study was to determine the molecular mechanism underlying innate immune response induced by misfolded truncated τ. We found that purified recombinant truncated τ induced morphological transformation of microglia from resting into the reactive phenotype. Simultaneously, truncated τ caused the release of NO, proinflammatory cytokines (IL-1β, IL-6, TNF-α), and tissue inhibitor of metalloproteinase-1 from the mixed glial cultures. Notably, when the pure microglial culture was activated with truncated τ, it displayed significantly higher levels of the proinflammatory cytokines, suggesting a key role of microglia in the τ-mediated inflammatory response. Molecular analysis showed that truncated τ increased the mRNA levels of three MAPKs (JNK, ERK1, p38β) and transcription factors AP-1 and NF-κB that ultimately resulted in enhanced mRNA expression of IL-1β, IL-6, TNF-α, and NO. Our results showed for the first time, to our knowledge, that misfolded truncated protein τ is able to induce innate immune response via a MAPK pathway. Consequently, we suggest that misfolded truncated protein τ represents a viable target for immunotherapy of Alzheimer's disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4049/jimmunol.1100216 | DOI Listing |
Oncogene
December 2024
Department of Gastroenterology and Hepatology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.
ZNRF3, a negative regulator of β-catenin signaling, removes Wnt receptors from the membrane. Currently, it is unknown which tumor-associated variants can be considered driver mutations and through which mechanisms they contribute to cancer. Here we show that all truncating mutations analyzed at endogenous levels exhibit loss-of-function, with longer variants retaining partial activity.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
Parkinson's disease (PD) is characterized by the deposition of misfolded α-synuclein (α-syn) in the brain. Converging evidence indicates that the intracellular transmission and subsequent templated amplification of α-syn are involved in the onset and progression of PD. However, the molecular mechanisms underlying the cell-to-cell transmission of pathological α-syn remain poorly understood.
View Article and Find Full Text PDFNat Rev Neurol
November 2024
Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
α-Synuclein misfolds into pathological forms that lead to various neurodegenerative diseases known collectively as α-synucleinopathies. In this Review, we provide a comprehensive overview of pivotal advances in α-synuclein research. We examine structural features and physiological functions of α-synuclein and summarize current insights into key post-translational modifications, such as nitration, phosphorylation, ubiquitination, sumoylation and truncation, considering their contributions to neurodegeneration.
View Article and Find Full Text PDFJ Clin Invest
November 2024
Hoxworth Blood Center, University of Cincinnati College of Medicine, Cincinnati, United States of America.
Severe congenital neutropenia (SCN) is frequently associated with dominant point mutations in ELANE, the gene encoding neutrophil elastase (NE). Chronic administration of granulocyte colony-stimulating factor (G-CSF) is a first-line treatment of ELANE-mutant (ELANEmut) SCN. However, some ELANEmut patients including patients with ELANE start codon mutations do not respond to G-CSF.
View Article and Find Full Text PDFJ Mol Biol
December 2024
Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University, Bochum, Germany; Cluster of Excellence RESOLV, Bochum, Germany. Electronic address:
Several proteins associated with neurodegenerative diseases, such as the mammalian prion protein (PrP), undergo liquid-liquid phase separation (LLPS), which led to the hypothesis that condensates represent precursors in the formation of neurotoxic protein aggregates. However, the mechanisms that trigger aberrant phase separation are incompletely understood. In prion diseases, protease-resistant and infectious amyloid fibrils are composed of N-terminally truncated PrP, termed C2-PrP.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!