Among the most prevalent and deadly primary brain tumors, high-grade gliomas evade complete surgical resection by diffuse invasion into surrounding brain parenchyma. Navigating through tight extracellular spaces requires invading glioma cells to alter their shape and volume. Cell volume changes are achieved through transmembrane transport of osmolytes along with obligated water. The sodium-potassium-chloride cotransporter isoform-1 (NKCC1) plays a pivotal role in this process, and previous work has demonstrated that NKCC1 inhibition compromises glioma invasion in vitro and in vivo by interfering with the required cell volume changes. In this study, we show that NKCC1 activity in gliomas requires the With-No-Lysine Kinase-3 (WNK3) kinase. Western blots of patient biopsies and patient-derived cell lines shows prominent expression of Ste-20-related, proline-alanine-rich kinase (SPAK), oxidative stress response kinase (OSR1), and WNK family members 1, 3, and 4. Of these, only WNK3 colocalized and coimmunoprecipitated with NKCC1 upon changes in cell volume. Stable knockdown of WNK3 using specific short hairpin RNA constructs completely abolished NKCC1 activity, as measured by the loss of bumetanide-sensitive cell volume regulation. Consequently, WNK3 knockdown cells showed a reduced ability to invade across Transwell barriers and lacked bumetanide-sensitive migration. This data indicates that WNK3 is an essential regulator of NKCC1 and that WNK3 activates NKCC1-mediated ion transport necessary for cell volume changes associated with cell invasion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3213919 | PMC |
http://dx.doi.org/10.1152/ajpcell.00203.2011 | DOI Listing |
Sex Med
December 2024
Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark.
Background: Peyronie's disease (PD) is a fibrotic disorder affecting the penile tunica albugínea, with unclear pathophysiology despite centuries of recognition.
Aim: This scoping review maps the effects of interventions in basic PD research, synthesizing evidence from in vivo and in vitro studies to guide future investigation.
Methods: In October-November 2023, a systematic search was conducted across PubMed, Embase (Ovid), Science of Web, and Scopus, following SRYCLE's guidelines.
Middle East J Dig Dis
October 2024
Department of Epidemiology, High Institute of Public Health, Alexandria University, Alexandria, Egypt.
Background: Repeated polyserositis, another name for familial Mediterranean fever (FMF), is an autoimmune disorder with an autosomal recessive nature primarily characterized by short-lived repeated periods of peritonitis, pleuritis, and arthritis, generally accompanied by fever.
Methods: Our participants were divided into two groups. Group I (patients): 100 individuals who were diagnosed as patients with FMF and were monitored.
Anim Cells Syst (Seoul)
January 2025
Department of Genome Medicine and Science, Gachon University College of Medicine, Incheon, Republic of Korea.
Dynamic modeling of cellular states has emerged as a pivotal approach for understanding complex biological processes such as cell differentiation, disease progression, and tissue development. This review provides a comprehensive overview of current approaches for modeling cellular state dynamics, focusing on techniques ranging from dynamic or static biomolecular network models to deep learning models. We highlight how these approaches integrated with various omics data such as transcriptomics, and single-cell RNA sequencing could be used to capture and predict cellular behavior and transitions.
View Article and Find Full Text PDFDrug Des Devel Ther
January 2025
Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China.
Introduction: The mechanism of remimazolam, a benzodiazepine that activates γ-aminobutyric acid a (GABAa) receptors, in cerebral ischemia/reperfusion (I/R) injury is not well understood. Therefore, we explored whether remimazolam activates protein kinase B (AKT)/glycogen synthase kinase-3β (GSK-3β)/nuclear factor erythroid 2-related factor 2 (NRF2) to attenuate brain I/R injury in transcerebral I/R-injured rats and transoxygenic glucose deprivation/reperfusion (OGD/R)-injured SY5Y cells.
Material And Methods: Remimazolam was added at the beginning of cell and rat reperfusion, and the PI3K/AKT inhibitor LY294002 was added to inhibit the AKT/GSK-3β/NRF2 pathway 24 h before cellular OGD/R treatment and 30 min before rat brain I/R treatment.
Adv Sci (Weinh)
January 2025
Interdisiplinary program in Genetics and Genomics, Texas A&M University, College Station, TX, 77843, USA.
Organelles are specialized subunits within cells which carry out vital functions crucial to cellular survival and form a tightly regulated network. Dysfunctions in any of these organelles are linked to numerous diseases impacting virtually every organ system in the human body. Targeted delivery of therapeutics to specific organelles within the cell holds great promise for overcoming challenging diseases and improving treatment outcomes through the minimization of therapeutic dosage and off-target effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!