Murine cytomegalovirus (MCMV) Smith strain has been cloned as a bacterial artificial chromosome (BAC) named pSM3fr and used for analysis of virus gene functions in vitro and in vivo. When sequencing the complete BAC genome, we identified a frameshift mutation within the open reading frame (ORF) encoding MCMV chemokine homologue MCK-2. This mutation would result in a truncated MCK-2 protein. When mice were infected with pSM3fr-derived virus, we observed reduced virus production in salivary glands, which could be reverted by repair of the frameshift mutation. When looking for the source of the mutation, we consistently found that virus stocks of cell culture-passaged MCMV Smith strain are mixtures of viruses with or without the MCK-2 mutation. We conclude that the MCK-2 mutation in the pSM3fr BAC is the result of clonal selection during the BAC cloning procedure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3196435 | PMC |
http://dx.doi.org/10.1128/JVI.00545-11 | DOI Listing |
Med Microbiol Immunol
June 2015
Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz and Research Center for Immunotherapy (FZI), Obere Zahlbacher Strasse 67, Hochhaus am Augustusplatz, 55131, Mainz, Germany.
Initial virus entry into cells of host organs and subsequent spread of viral progeny between tissue cells are events fundamental to viral pathogenesis. Glycoprotein complexes inserted in the virion envelope are critically involved in the cell entry process. Here we review and discuss recent work that has shed light on the in vivo role of the trimeric glycoprotein complex gH/gL/gO of murine cytomegalovirus (mCMV) as a model to propose the role of the corresponding complex of human CMV, for which experimental studies in vivo are not feasible due to the host species specificity of CMVs and evident ethical constraints.
View Article and Find Full Text PDFMucosal Immunol
January 2015
Institute of Immunology, Hannover Medical School, Hannover, Germany.
Infection with cytomegalovirus (CMV) shows a worldwide high prevalence with only immunocompromised individuals or newborns to become symptomatic. The host's constitution and the pathogen's virulence determine whether disease occurs after infection. Mouse CMV (MCMV) is an appreciated pathogen for in vivo investigation of host-pathogen interactions.
View Article and Find Full Text PDFPLoS Pathog
February 2014
Max von Pettenkofer-Institute for Virology, Ludwig-Maximilians-University Munich, Munich, Germany.
Human cytomegalovirus (HCMV) forms two gH/gL glycoprotein complexes, gH/gL/gO and gH/gL/pUL(128,130,131A), which determine the tropism, the entry pathways and the mode of spread of the virus. For murine cytomegalovirus (MCMV), which serves as a model for HCMV, a gH/gL/gO complex functionally homologous to the HCMV gH/gL/gO complex has been described. Knock-out of MCMV gO does impair, but not abolish, virus spread indicating that also MCMV might form an alternative gH/gL complex.
View Article and Find Full Text PDFJ Virol
October 2011
Max von Pettenkofer Institute, Lehrstuhl Virologie, Feodor-Lynen-Strasse 25, München, Germany.
Murine cytomegalovirus (MCMV) Smith strain has been cloned as a bacterial artificial chromosome (BAC) named pSM3fr and used for analysis of virus gene functions in vitro and in vivo. When sequencing the complete BAC genome, we identified a frameshift mutation within the open reading frame (ORF) encoding MCMV chemokine homologue MCK-2. This mutation would result in a truncated MCK-2 protein.
View Article and Find Full Text PDFVirology
September 2008
Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
Guinea pig cytomegalovirus (GPCMV) provides a useful model for studies of congenital CMV infection. During characterization of the GPCMV genome sequence, we identified two types of strains in a virus stock purchased from ATCC. One of them, GPCMV/del, lacks a 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!