Canonical nuclear factor kappaB (NF-κB) activation signals stimulate nuclear translocation of p50:p65, replacing inhibitory p50:p50 with activating complexes on chromatin. C/EBP interaction with p50 homodimers provides an alternative pathway for NF-κB target gene activation, and interaction with p50:p65 may enhance gene activation. We previously found that C/EBPα cooperates with p50, but not p65, to induce Bcl-2 transcription and that C/EBPα induces Nfkb1/p50, but not RelA/p65, transcription. Using p50 and p65 variants containing the FLAG epitope at their N- or C-termini, we now show that C/EBPα, C/EBPα myeloid oncoproteins, or the LAP1, LAP2, or LIP isoforms of C/EBPβ have markedly higher affinity for p50 than for p65. Deletion of the p65 transactivation domain did not increase p65 affinity for C/EBPs, suggesting that unique residues in p50 account for specificity, and clustered mutation of HSDL in the "p50 insert" lacking in p65 weakens interaction. Also, in contrast to Nfkb1 gene deletion, absence of the RelA gene does not reduce Bcl-2 or Cebpa RNA in unstimulated cells or prevent interaction of C/EBPα with the Bcl-2 promoter. Saturating mutagenesis of the C/EBPα basic region identifies R300 and nearby residues, identical in C/EBPβ, as critical for interaction with p50. These findings support the conclusion that C/EBPs activate NF-κB target genes via contact with p50 even in the absence of canonical NF-κB activation and indicate that targeting C/EBP:p50 rather than C/EBP:p65 interaction in the nucleus will prove effective for inflammatory or malignant conditions, alone or synergistically with agents acting in the cytoplasm to reduce canonical NF-κB activation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3196798PMC
http://dx.doi.org/10.1158/1541-7786.MCR-11-0072DOI Listing

Publication Analysis

Top Keywords

nf-κb activation
12
p50 p65
12
c/ebpα c/ebpα
8
p50
8
targeting c/ebpp50
8
interaction p50
8
nf-κb target
8
gene activation
8
canonical nf-κb
8
c/ebpα
7

Similar Publications

The application of external electric fields to influence chemical reactions at electrode interfaces has attracted considerable interest in recent years. However, the design of electric fields to achieve highly efficient and selective catalytic systems, akin to the optimized fields found at enzyme active sites, remains a significant challenge. Consequently, there has been substantial effort in probing and understanding the interfacial electric fields at electrode/electrolyte interfaces and their effect on adsorbates.

View Article and Find Full Text PDF

This study evaluates acetylcholinesterase (AChE) enzyme activity levels, oxidative stress parameters, histopathological findings, and serum melatonin levels in rat brain tissue. 32 male Wistar Albino rats were randomly divided into four groups: Control, Light, Dark, Dim light ( = 8 each group). After a 30 day experiment, brain tissues were collected to measure AChE, glutathione S-transferase (GST), glutathione (GSH), and malondialdehyde (MDA) levels and conduct histopathological analyses.

View Article and Find Full Text PDF

Burns carry a large surface area, varying in shapes and depths, and an elevated risk of infection. Regardless of the underlying etiology, burns pose significant medical challenges and a high mortality rate. Given the limitations of current therapies, tissue-engineering-based treatments for burns are inevitable.

View Article and Find Full Text PDF

Silica-Activated Redox Signaling Confers Rice with Enhanced Drought Resilience and Grain Yield.

ACS Nano

January 2025

State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.

Under a changing climate, enhancing the drought resilience of crops is critical to maintaining agricultural production and reducing food insecurity. Here, we demonstrate that seed priming with amorphous silica (SiO) nanoparticles (NPs) (20 mg/L) accelerated seed germination speed, increased seedlings vigor, and promoted seedling growth of rice under polyethylene glycol (PEG)-mimicking drought conditions. An orthogonal approach was used to uncover the mechanisms of accelerated seed germination and enhanced drought tolerance, including electron paramagnetic resonance, Fourier transform infrared spectroscopy (FTIR), metabolomics, and transcriptomics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!