Alumina nanoparticles enhance growth of Lemna minor.

Aquat Toxicol

Department of Zoology, Ecology and Plant Sciences, School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Field, Cork, Ireland.

Published: October 2011

The industrial use of nanoparticles is rapidly increasing, and this has given rise to concerns about potential biological impacts of engineered particles released into the environment. So far, relatively little is known about uptake, accumulation and responses to engineered nanoparticles by plants. In this study, the effects of alumina nanoparticles on growth, morphology and photosynthesis of Lemna minor were quantified. It was found that alumina nanoparticles substantially increase biomass accumulation of L. minor. Such a stimulatory effect of alumina nanoparticles on growth has not been reported previously. Enhanced biomass accumulation was paralleled by morphological adjustments such as increased root length and number of fronds per colony, and by increased photosynthetic efficiency. Metal nanoparticles have previously been shown to enhance the energy transfer efficiency of isolated reaction centres; therefore it is proposed that the mechanism underlying the alumina mediated enhancement of biomass accumulation in L. minor is associated with increased efficiencies in the light reactions of photosynthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aquatox.2011.06.019DOI Listing

Publication Analysis

Top Keywords

alumina nanoparticles
16
biomass accumulation
12
nanoparticles enhance
8
lemna minor
8
nanoparticles growth
8
accumulation minor
8
nanoparticles
6
alumina
5
enhance growth
4
growth lemna
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!