Background: Obesity has become a leading global health problem owing to its strong association with a high incidence of diseases.

Aim: To induce rat obesity using high fat diet (HFD) and to estimate oxidative stress markers in their liver, heart and kidney tissues in order to shed the light on the effect of obesity on these organs.

Materials And Methods: Sixty white albino rats weighing 150-200 g were randomly divided into two equal groups; group I: received high fat diet for 16 weeks, and group II (control group): received only normal diet (rat chow) for 16 weeks. Blood samples were taken for measurement of lipid profile, tissue samples from liver, heart and kidney were taken for determination of malondialdehyde (MDA), protein carbonyl (PCO), reduced glutathione (GSH) levels, and the activities of glutathione S- transferase (GST) glutathione peroxidase (GPx), catalase (CAT) and paraoxonase1 (PON1) enzymes.

Results: Data showed that feeding HFD diet significantly increased final body weight and induced a state of dyslipideamia. Also our results showed a significant increase MDA and PCO levels in the hepatic, heart and renal tissues of obese rats, as well as a significant decrease in the activity of GST, GPx and PON 1 enzymes. On the other hand CAT enzyme activity showed significant decrease only in renal tissues of obese rats with non significant difference in hepatic and heart tissues. GSH levels showed significant decrease in both renal and hepatic tissues of obese animals and significant increase in their heart tissues. Correlation studies in obese animals showed a negative correlation between MDA and PCO tissue levels and the activities of GPx, GST and PON1 in all tissues and also with CAT enzyme activity in renal tissues. Also a negative correlation was detected between MDA & PCO tissues levels and GSH levels in both hepatic and renal tissues. While positive correlation was found between them and GSH levels in heart tissues.

Conclusion: High fat diet-induced obesity is accompanied by increased hepatic, heart, and renal tissues oxidative stress, which is characterized by reduction in the antioxidant enzymes activities and glutathione levels, that correlate with the increase in MDA and PCO levels in most tissues. This may probably contribute to the additional progression of obesity related problems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3174870PMC
http://dx.doi.org/10.1186/1758-5996-3-17DOI Listing

Publication Analysis

Top Keywords

renal tissues
20
high fat
16
gsh levels
16
mda pco
16
oxidative stress
12
fat diet
12
tissues
12
hepatic heart
12
tissues obese
12
levels
9

Similar Publications

Aerobic exercise prevents renal osteodystrophy via irisin-activated osteoblasts.

JCI Insight

January 2025

Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.

Renal osteodystrophy is commonly seen in patients with chronic kidney disease (CKD) due to disrupted mineral homeostasis. Given the impaired renal function in these patients, common anti-resorptive agents, including bisphosphonates, must be used with caution or even contraindicated. Therefore, an alternative therapy without renal burden to combat renal osteodystrophy is urgently needed.

View Article and Find Full Text PDF

Adenine base editor corrected ADPKD point mutations in hiPSCs and kidney organoids.

Adv Biotechnol (Singap)

June 2024

MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China.

Autosomal dominant polycystic kidney disease (ADPKD) is a dominant genetic disorder caused primarily by mutations in the PKD1 gene, resulting in the formation of numerous cysts and eventually kidney failure. However, there are currently no gene therapy studies aimed at correcting PKD1 gene mutations. In this study, we identified two mutation sites associated with ADPKD, c.

View Article and Find Full Text PDF

Puerarin Attenuates Podocyte Damage in Mice With Diabetic Kidney Disease by Modulating the AMPK/Nrf2 Pathway.

Int J Endocrinol

January 2025

Nephrology Department, Jiangxi Provincial Key Research Laboratory of Traditional Chinese Medicine, Key Research Laboratory of Chronic Renal Failure, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330006, China.

This study aimed to investigate the potential mechanisms of puerarin in alleviating diabetic nephropathy (DKD) in mice. The DKD model was induced by multiple low-dose injections of streptozotocin (STZ) and a high-sugar and high-fat diet in male C57BL/6J mice. After confirming the onset of DKD, mice were given irbesartan, distilled water, or different concentrations of puerarin (40 and 80 mg/kg/d) by gavage for 8 weeks.

View Article and Find Full Text PDF

Plastics are globally considered a significant threat, particularly to metropolitan areas, due to the extensive use of plastic products. This research is the first of its kind to document microplastics contamination and its effects on Red wettled lapwing (Vanellus indicus). The concentration of microplastics (MPs) was measured from surface water at different locations including canals and drains, which are the primary sources of MPs pollution in the metropolitan city Lahore, Pakistan.

View Article and Find Full Text PDF

The question of strains in AA amyloidosis.

Sci Rep

January 2025

Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, C11, 75185, Uppsala, Sweden.

The existence of transmissible amyloid fibril strains has long intrigued the scientific community. The strain theory originates from prion disorders, but here, we provide evidence of strains in systemic amyloidosis. Human AA amyloidosis manifests as two distinct clinical phenotypes called common AA and vascular AA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!