Background: Chemical insecticides against mosquitoes are a major component of malaria control worldwide. Fungal entomopathogens formulated as biopesticides and applied as insecticide residual sprays could augment current control strategies and mitigate the evolution of resistance to chemical-based insecticides.
Methods: Anopheles stephensi mosquitoes were exposed to Beauveria bassiana or Metarhizium acridum fungal spores and sub-lethal effects of exposure to fungal infection were studied, especially the potential for reductions in feeding and host location behaviours related to olfaction. Electrophysiological techniques, such as electroantennogram, electropalpogram and single sensillum recording techniques were then employed to investigate how fungal exposure affected the olfactory responses in mosquitoes.
Results: Exposure to B. bassiana caused significant mortality and reduced the propensity of mosquitoes to respond and fly to a feeding stimulus. Exposure to M. acridum spores induced a similar decline in feeding propensity, albeit more slowly than B. bassiana exposure. Reduced host-seeking responses following fungal exposure corresponded to reduced olfactory neuron responsiveness in both antennal electroantennogram and maxillary palp electropalpogram recordings. Single cell recordings from neurons on the palps confirmed that fungal-exposed behavioural non-responders exhibited significantly impaired responsiveness of neurons tuned specifically to 1-octen-3-ol and to a lesser degree, to CO2.
Conclusions: Fungal infection reduces the responsiveness of mosquitoes to host odour cues, both behaviourally and neuronally. These pre-lethal effects are likely to synergize with fungal-induced mortality to further reduce the capacity of mosquito populations exposed to fungal biopesticides to transmit malaria.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3162589 | PMC |
http://dx.doi.org/10.1186/1475-2875-10-219 | DOI Listing |
PLoS One
January 2025
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.
Myelination is a key biological process wherein glial cells such as oligodendrocytes wrap myelin around neuronal axons, forming an insulative sheath that accelerates signal propagation down the axon. A major obstacle to understanding myelination is the challenge of visualizing and reproducibly quantifying this inherently three-dimensional process in vitro. To this end, we previously developed artificial axons (AAs), a biocompatible platform consisting of 3D-printed hydrogel-based axon mimics designed to more closely recapitulate the micrometer-scale diameter and sub-kilopascal mechanical stiffness of biological axons.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia.
A common heavy metal in many facets of daily life is aluminum (AlCl3), which can be found in food, toothpaste, cosmetics, food additives, and numerous pharmaceutical items. The hippocampus, liver, and kidneys have the highest concentrations of this powerful neurotoxin, which also accumulates over time and contributes to the development of a number of cognitive disorders. Long-term overconsumption of AlCl3 results in hepatic and renal toxicity as well as neuronal inflammation.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Clinical Science, SUS, Division of Islet Cell Physiology, University of Lund, Malmö, Sweden.
The impact of islet neuronal nitric oxide synthase (nNOS) on glucose-stimulated insulin secretion (GSIS) is less understood. We investigated this issue by performing simultaneous measurements of the activity of nNOS versus inducible NOS (iNOS) in GSIS using isolated murine islets. Additionally, the significance of extracellular NO on GSIS was studied.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Neurobiology, Harvard Medical School, Boston, MA 02115.
The sense of hearing originates in the cochlea, which detects sounds across dynamic sensory environments. Like other peripheral organs, the cochlea is subjected to environmental insults, including loud, damage-inducing sounds. In response to internal and external stimuli, the central nervous system directly modulates cochlear function through olivocochlear neurons (OCNs), which are located in the brainstem and innervate the cochlear sensory epithelium.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908.
Although viruses subvert innate immune pathways for their replication, there is evidence they can also co-opt antiviral responses for their benefit. The ubiquitous human pathogen, Herpes simplex virus-1 (HSV-1), encodes a protein (UL12.5) that induces the release of mitochondrial nucleic acid into the cytosol, which activates immune-sensing pathways and reduces productive replication in nonneuronal cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!