Electronic energy transfer in highly aligned MEH-PPV single chains.

J Phys Chem B

Center for Nano and Molecular Science and Technology, University of Texas, Austin, Texas 78712, USA.

Published: August 2011

This paper describes the simultaneous measurement of excitation and emission anisotropy to visualize energy transfer in single chains of the prototypical conjugated polymer MEH-PPV, for samples with >70% of the single chains organized into extended, rod-like conformations. The uniformity and high degree of order of the single molecules in these experiments has allowed direct comparison of our experimental data to energy-transfer simulations in model polymer chains. Increases in average anisotropy from 0.62 to 0.74 from excitation to emission and average changes of <15° to the in-plane dipole principal orientation axis confirmed that energy was transferred to a relatively small number of sites in these highly ordered chains. This organization persisted even at large molecular weights (M(n) = 850 kDa). Electronic energy transfer in highly anisotropic model chains was simulated using an incoherent Förster-type mechanism to generate modulation depth histograms in good agreement with the observed data, as well as ensemble emission energies consistent with previously reported results. In these ordered model chains, excitons migrated an average of 6 nm before emission. This distance, far larger than the radius for single-step FRET, implies that energy transfer in MEH-PPV is a multistep funneling process.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp204591pDOI Listing

Publication Analysis

Top Keywords

single chains
12
energy transfer
8
excitation emission
8
electronic energy
4
transfer highly
4
highly aligned
4
aligned meh-ppv
4
single
4
meh-ppv single
4
chains
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!