Preparation and characterization of monodispersed microfloccules of TiO₂ nanoparticles with immobilized multienzymes.

ACS Appl Mater Interfaces

School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.

Published: September 2011

Microfloccules of TiO(2) nanoparticles, on which glycerol-dehydrogenase (GDH), 1,3-propanediol-oxidoreductase (PDOR), and glycerol-dehydratase (GDHt) were coimmobilized, were prepared by adsorption-flocculation with polyacrylamide (PAM). The catalytic activity of immobilized enzyme in the glycerol redox reaction system, the enzyme leakage, stabilities of pH and temperature, as well as catalytic kinetics of immobilized enzymes relative to the free enzymes were evaluated. Enzyme loading on the microfloccules as much as 104.1 mg/g TiO(2) (>90% loading efficiency) was obtained under the optimal conditions. PAM played a key role for the formation of microfloccules with relatively homogeneous distribution of size and reducing the enzyme leakage from the microfloccules during the catalysis reaction. The stabilities of GDH against pH and temperature was significantly higher than that those of free GDH. Kinetic study demonstrated that simultaneous NAD(H) regeneration was feasible in glycerol redox system catalysted by these multienzyme microfloccules and the yield of 1, 3-popanediol (1, 3-PD) was up to 11.62 g/L. These results indicated that the porous and easy-separation microfloccules of TiO(2) nanoparticles with immobilized multienzymes were efficient in term of catalytic activity as much as the free enzymes. Moreover, compared with free enzyme, the immobilized multienzymes system exhibited the broader pH, higher temperature stability.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am200792aDOI Listing

Publication Analysis

Top Keywords

immobilized multienzymes
12
nanoparticles immobilized
8
microfloccules tio2
8
tio2 nanoparticles
8
catalytic activity
8
glycerol redox
8
enzyme leakage
8
free enzymes
8
microfloccules
7
immobilized
5

Similar Publications

Compartmentalized co-immobilization of cellulase and cellobiose phosphorylase within zeolitic imidazolate framework efficiently synthesizes 1-p-Glc: Glycosylation of FDG.

Int J Biol Macromol

December 2024

Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China. Electronic address:

Enzymatic glycosylation is an efficient and biocompatible approach to enhance natural product bioavailability. Cellobiose phosphorylase, a novel glycosyltransferase, utilizes 1-phospho-glucose (1-p-Glc) as a glycosyl donor for regioselective glycosylation of various natural substrates. However, the high cost of 1-p-Glc limits the economic feasibility of the process.

View Article and Find Full Text PDF

The cascade of sugar isomerases is one of the most practical methods for producing rare sugars, and enzyme immobilization endows it with high economic efficiency, operational convenience and reusability. However, the most employed cross-linker glutaraldehyde (GA) has the disadvantages of enzyme deactivation and limitation of substrate binding. Herein, three compounds, glyoxal, GA, and 2,5-furandicarboxaldehyde (DFF) were evaluated within a previously developed cascade comprising ribose-5-phosphate isomerase and D-tagatose-3-epimerase to prepare D-ribulose form D-xylose.

View Article and Find Full Text PDF

Precipitated-crosslinked multi-enzyme hybrid nanoflowers for efficient synthesis of α-ketoglutaric acid.

Int J Biol Macromol

January 2025

State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China. Electronic address:

Cascade catalysis of glutamate oxidase (GLOX) and catalase (CAT) to perform one-pot synthetic route for α-ketoglutarate (α-KG) production offers several advantages including simplicity of operation and the generation of few reaction by-products. Nevertheless, the instability of free GLOX and CAT, the high production cost and the difficulty of recycling severely limits its industrial utilisation. Here, catalase-inorganic hybrid nanoflowers were first prepared, and cross-linked with GLOX precipitates by a macromolecular cross-linking agent dextran polyaldehyde to form a novel dual enzyme precipitation-cross-linking hybrid nanoflower (GLOX@CAT-HNFs).

View Article and Find Full Text PDF
Article Synopsis
  • Enzyme immobilisation is crucial for creating stable biocatalysts that can be reused, but the behavior of enzymes on solid supports, especially under operational conditions, is not fully understood.
  • X-ray fluorescence imaging was used to study structural changes in a biocatalyst made from two unmodified metalloenzymes (laccase and dehydrogenase) when exposed to high temperatures or other operational conditions.
  • Findings reveal that while both protein and metal components rearrange during usage, they move as a unit, causing minor structural changes but leading to the biocatalyst's eventual exhaustion, highlighting the need for better understanding using advanced imaging techniques for improved bioprocesses.
View Article and Find Full Text PDF

Spatially ordered immobilization of cascade enzymes for the construction of a robust colorimetric hydrogel sensor.

Biosens Bioelectron

February 2025

College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China. Electronic address:

The development of a suitable mimetic scaffolds for maintaining high activity and stability of co-immobilized multi-enzymes is a key challenge in biotechnology. Herein, we achieved the regular distribution of cascade enzymes through spatially controlled hierarchical loading into protein-inorganic hybrid nanoflowers using a mild biomineralization technique. The comprehensive understanding of sequential regulation in constructing controlled nanoarchitecture enables to combine a continuous reaction and achieve tailoring catalysis for biomimetic application.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!