Surface-enhanced Raman scattering (SERS), electrochemistry, and generalized two-dimensional correlation analysis (G2DCA) methods were used to define neuromedin B (NMB) ordered superstructures on Ag, Au, and Cu electrode surfaces at different applied electrode potentials in an aqueous solution at physiological pH. The orientation of NMB and the adsorption mechanism were determined based on the analysis of enhancement, broadness, and shift in wavenumber of particular bands, which allow drawing some conclusions about NMB geometry and changes in this geometry upon change of the electrode type and applied electrode potential. The presented data demonstrated that NMB deposited onto the Ag, Au, and Cu electrode surfaces showed bands due to vibrations of the moieties that were in contact/close proximity to the electrode surfaces and thus were located on the same side of the polypeptide backbone. These included the Phe(9) and Trp(4) rings, the sulfur atom of Met(10), and the -CCN- and -C═O units of Asn(2). However, some subtle variations in the arrangement of these fragments upon changes in the applied electrode potential were distinguished. The Amide-III vibrations exhibited an electrochemical Stark effect (potential dependent frequencies) with Stark tuning slope sensitive to the electrode material. Potential-difference spectrum revealed that the imidazole ring of His(8) was bonded to the Cu electrode surface at relatively positive potentials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp2026863DOI Listing

Publication Analysis

Top Keywords

electrode surfaces
12
applied electrode
12
electrode
9
surface-enhanced raman
8
raman scattering
8
electrode potential
8
potential
4
potential induced
4
induced changes
4
changes neuromedin
4

Similar Publications

Target-assisted self-powered photoelectrochemical sensor based on AgS/BiOCl heterojunction for ultrasensitive chlorpyrifos detection.

Talanta

December 2024

College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China. Electronic address:

Chlorpyrifos (CPF), a widely used organophosphorus pesticide, presents substantial risks to both environmental and human health due to its persistent accumulation, thereby necessitating the development of effective detection methods. Self-powered photoelectrochemical (PEC) sensors, as an innovative technology, address the limitations inherent in conventional sensors, such as susceptibility to interference and inadequate signal response. Herein, we synthesized AgS/BiOCl as a photosensitive material, employing it as a light-harvesting substrate and a signal-transducing platform to develop a self-powered PEC sensor for the detection of CPF.

View Article and Find Full Text PDF

Microbial fuel cells to monitor natural attenuation around groundwater plumes.

Environ Sci Pollut Res Int

January 2025

School of Natural and Built Environment, Queen's University Belfast, Belfast, Northern Ireland, BT7 1NN, UK.

This research presents a straightforward and economically efficient design for a microbial fuel cell (MFC) that can be conveniently integrated into a borehole to monitor natural attenuation in groundwater. The design employs conventional, transparent, and reusable PVC bailers with graphite tape and granular activated carbon to create high surface area electrodes. These electrodes are connected across redox environments in nested boreholes through a wire and variable resistor setup.

View Article and Find Full Text PDF

Cefixime (CFX) is a potent antibiotic against gram-positive and gram-negative bacteria that resists degradation and typical removal procedures. This research aimed to synthesize a modified AgCuFeO@GO nanoparticle electrode with anchored MnO for removing CFX by three-dimensional electrochemical oxidation. The physical and chemical characteristics of the nanocomposite were evaluated using various techniques, including FESEM, XRD, EDS-mapping, FTIR, BET, VSM, and TGA.

View Article and Find Full Text PDF

Enhancing Carbon Monoxide Tolerance in Low-Temperature PEM Fuel Cells through Carbon Nitride Surface Modification.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

Low-temperature proton exchange membrane fuel cells (PEMFCs) reuqire highly pure hydrogen gas due to their extreme sensitivity to carbon monoxide (CO) contamination, which poses a challenge for using cost-effective reformed hydrogen sources. To address this issue, we have developed a surface modification strategy by applying a 0.5-0.

View Article and Find Full Text PDF

Implantable systems with chronic stability, high sensing performance, and extensive spatial-temporal resolution are a growing focus for monitoring and treating several diseases such as epilepsy, Parkinson's disease, chronic pain, and cardiac arrhythmias. These systems demand exceptional bendability, scalable size, durable electrode materials, and well-encapsulated metal interconnects. However, existing chronic implantable bioelectronic systems largely rely on materials prone to corrosion in biofluids, such as silicon nanomembranes or metals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!