Objective: To elucidate the serological characteristics and molecular mechanism of a blood donor with weaken B antigen.
Methods: The ABO blood group antigens on red blood cells were identified by monoclonal antibodies, the ABO antibodies in serum were detected by standard A, B, O cells and the activity of the B glycosyltransferase was analyzed. The full-length sequence and 5'-untranslated region (5'-UTR) sequence of ABO gene were amplified by polymerase chain reaction (PCR) respectively and direct sequencing. The alternative splicing isoforms of ABO cDNA were obtained by reverse transcription-PCR(RT-PCR) and analyzed with cloning and sequencing techniques. The level of methylation of the CpG island in ABO gene promoter was analyzed by bisulfite sequencing method.
Results: The serological characteristic of the donor showed that the B antigen was decreased obviously without anti-B antibodies in serum and the B glycosyltransferase activity was decreased as well. The genotype of the donor was B101/O01 without any other mutations in the full-length coding sequences and splice receptor sites. The nucleotide characteristics of the 5'-UTR was consistent with B101/O01 and no any abnormity was identified in the promoter, enhancer and the negative regulatory sequence regions. The integrative cDNA transcript of ABO gene was obtained and no new splicing isoform was found. Compared with the normal B phenotype, a number of methylated CpG sites were found near the promoter of ABO gene in this sample.
Conclusion: The methylation in the CpG island of ABO gene promoter region may cause weak expression of the B antigen.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3760/cma.j.issn.1003-9406.2011.04.008 | DOI Listing |
Background: The Bombay and para-Bombay blood groups are rare blood types that are significant to clinical blood transfusions. Accurate para-Bombay blood group identification is important for the safety of transfusions.
Methods: Serological and molecular biology methods were used to detect one case of ABO blood type.
J Taibah Univ Med Sci
December 2024
Department of Pathology, Faculty of Medicine, Umm Al-Qura University, Makkah, KSA.
Objectives: , which is primarily recognized for determining blood types, shows variable expression patterns in different tissues and cancer types. This study investigated the relationship between gene expression and cancer, and assessed its potential impact on patient survival.
Methods: Utilizing the GEPIA database, we analyzed expression in normal and tumor tissues across various cancer types using online tools for comprehensive evaluation.
Arch Bronconeumol
January 2025
Department of Allergy and Clinical Immunology, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China; Guangzhou National Laboratory, Guangzhou, Guangdong, China. Electronic address:
Objectives: To investigate the microbiota and metabolome of patients with ABO compared with bronchiectasis and asthma, and determine the relevance with clinical characteristics, inflammatory endotype and exacerbation risks.
Methods: In this prospective cohort study, patients underwent comprehensive assessments, including sputum differential cell count, and sputum collection at baseline. Sputum microbiota was profiled via 16S rRNA gene sequencing and metabolome via liquid chromatography/mass spectrometry.
Environ Microbiome
January 2025
Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde (IOW), 18119, Rostock, Germany.
Background: Zostera marina is an important ecosystem engineer influencing shallow water environments and possibly shaping the microbiota in surrounding sediments and water. Z. marina is typically found in marine systems, but it can also proliferate under brackish conditions.
View Article and Find Full Text PDFFront Immunol
January 2025
Blood Group Reference Laboratory, Dalian Blood Center, Dalian, China.
Background: Mutations in the ABO gene, including base insertions, deletions, substitutions, and splicing errors, can result in blood group subgroups associated with the quantity and quality of blood group antigens. Here, we employed third-generation PacBio sequencing to uncover a novel allele arising from an intron splice site mutation, which altered the expected A phenotype to manifest as an Ael phenotype. The study aimed to characterize the molecular mechanism underlying this phenotypic switch.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!