Photochemical processes on ground and airborne surfaces have been suspected to lead to production of HONO in the sunlit lower troposphere, e.g. upon light activation of humic acids followed by reaction with adsorbed NO(2). Here, we used tannic and gentisic acids as proxies for atmospheric polyphenolic compounds to obtain further insights into the photoenhanced NO(2) conversion to HONO, which is a significant tropospheric hydroxyl radical (OH) source. The coated wall flow tube technique was used in combination with online detection of gas-phase HONO and NO(x) under different irradiation conditions. Photoenhanced HONO formation rates of 0.1 to 2 ppbv s(-1) were measured upon NO(2) (0-400 ppbv) uptake on tannic and gentisic acid coatings under irradiation with UV light. The data allow identification of three pathways of light-induced HONO formation: (I) photolysis of a nitroaromatic intermediate formed by a non-photochemical process in the dark, with a photolysis frequency of 10(4) s(-1) at 2 × 10(20) photons m(-2) photon flux; (II) direct photo-oxidation, presumably through electron or hydrogen transfer of the excited substrate; and (III) sensitized electron or hydrogen transfer as suggested before but also demonstrated for visible irradiation here. Aging of tannic acid under oxygen in the dark led to products which promoted light-induced HONO formation in the visible.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c1pp05113j | DOI Listing |
Environ Pollut
January 2025
State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China. Electronic address:
As a vital precursor of hydroxyl radicals (OH), atmospheric nitrous acid (HONO) plays a significant role in tropospheric chemistry and the production of secondary pollutants. However, knowledge of its sources remains insufficient. To comprehensively investigate the HONO chemistry in polluted cities and alleviate the O pollution, based on a comprehensive HONO-related field campaign in Zibo City, on the North China Plain, the parameterized formulas of additional HONO sources were validated in a box model (based on the default MCMv3.
View Article and Find Full Text PDFTalanta
April 2025
School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China. Electronic address:
Nitrous acid (HONO) is crucial in atmospheric chemistry as it is a major precursor for hydroxyl radicals (OH), the dominant atmospheric oxidant. Hydroxyl radicals are essential in the formation of secondary air pollutants like ozone and particulate matter. This study presents a newly developed Incoherent Broadband Cavity Enhanced Absorption Spectroscopy (IBBCEAS) system for precise and rapid measurements of HONO and nitrogen dioxide (NO) emissions.
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China.
Reactive nitrogen (Nr) emissions significantly affect air quality and the nitrogen cycle in ecosystems. Heavy-duty diesel vehicles (HDDVs), as major sources of these emissions, exhibit complex emission characteristics because of the combined effects of different driving conditions and aftertreatment technologies. This study first investigated the emission factors (EFs) of Nr species, including NO, NO, HONO, NO, and NH, from HDDVs under different emission standards (China IV/V/VI) and cheating strategies, with a particular focus on the impact of selective catalytic reduction (SCR) systems.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States.
A monocationic dicopper(I,I) nitrite complex [Cu(μ-κ:κ-ON)DPFN][NTf] () (DPFN = 2,7-bis(fluoro-di(2-pyridyl)methyl)-1,8-naphthyridine, NTf = N(SOCF)), was synthesized by treatment of a dicopper acetonitrile complex, [Cu(μ-MeCN)DPFN][NTf] (), with tetrabutylammonium nitrite ([BuN][NO]). DFT calculations indicate that is one of three linkage isomers that are close in energy and presumably accessible in solution. Reaction of the μ-κ:κ-ON complex with -TolSH produces nitrous acid (HONO) and the corresponding dicopper thiolate species via an acid-base exchange reaction.
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!