We consider the application of tomography to the reconstruction of two-dimensional vector fields. The most practical sensor configuration in such problems is the regular positioning along the boundary of the reconstruction domain. However, such a configuration does not result in uniform distribution in the Radon parameter space, which is a necessary requirement to achieve accurate reconstruction results. On the other hand, sampling the projection space uniformly imposes serious constraints on space or time. In this paper, we propose to place the sensors regularly along the boundary of the reconstruction domain and employ probabilistic weights with the purpose of compensating for the lack of uniformity in the distribution of projection space parameters. Simulation results demonstrate that, when the proposed probabilistic weights are employed, an average 27% decrease in the reconstruction error may be achieved, over the case that projection measurements are not weighed (e.g., in one case the error reduces from 3.7% to 2.6%). When compared with the case where actual uniform sampling of the projection space is employed, the proposed method achieves a 90 times reduction in the number of the required sensors or 180 times reduction in the total scanning time, with only 7% increase in the error with which the vector field is estimated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/JOSAA.28.001620 | DOI Listing |
Sci Rep
January 2025
i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
Technological advancements have allowed the detection of increasingly complex forensic genetics samples, as minimum amounts of DNA can now be detected in crime scenes or other settings of interest. The weight of the evidence depends on several parameters regarding the population and sample-related analytical factors, the latter in a greater number when the DNA amount is considered. This led to the development of probabilistic genotyping software (PGS), able to deal with the associated complexities.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Industrial Engineering and Management, Ming Chi University of Technology, New Taipei City, 243, Taiwan.
This study develops the you only look once segmentation (YOLOSeg), an end-to-end instance segmentation model, with applications to segment small particle defects embedded on a wafer die. YOLOSeg uses YOLOv5s as the basis and extends a UNet-like structure to form the segmentation head. YOLOSeg can predict not only bounding boxes of particle defects but also the corresponding bounding polygons.
View Article and Find Full Text PDFForensic Sci Int Genet
January 2025
Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08102, USA; Department of Computer Science, Rutgers University, Camden, NJ 08102, USA.
Recent developments in single-cell analysis have revolutionized basic research and have garnered the attention of the forensic domain. Though single-cell analysis is not new to forensics, the ways in which these data can be generated and interpreted are. Modern interpretation strategies report likelihood ratios that rely on a model of the world that is a simplification of it.
View Article and Find Full Text PDFMDM Policy Pract
January 2025
Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles (UCLA), Los Angeles, California, USA.
Unlabelled: Consumption of sugar-sweetened beverages (SSBs) contributes to weight gain, obesity, and diabetes. Soda tax has been proposed to reduce consumption of SSBs. What remains unclear is whether the soda tax has an effect on health and health care costs.
View Article and Find Full Text PDFPsychiatry Res Neuroimaging
January 2025
Department of Psychiatry, Kyoto University Graduate School of Medicine, Address: 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
The left posterior superior temporal gyrus (pSTG) is thought to be involved in the pathophysiology and core symptoms of schizophrenia, although its structural connectivity has not yet been systematically investigated. Here, we aimed to evaluate its white matter (WM) connectivity with Broca's area, the thalamus, and the right pSTG. Eighty-three patients with schizophrenia and 141 healthy controls underwent diffusion-weighted imaging and T1-weighted three-dimensional magnetic resonance imaging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!