Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We present a wind-predictive controller for astronomical adaptive optics (AO) systems that is able to predict the motion of a single windblown layer in the presence of other, more slowly varying phase aberrations. This controller relies on fast, gradient-based optical flow estimation to identify the velocity of the translating layer and a recursive mean estimator to account for turbulence that varies on a time scale much slower than the operating speed of the AO loop. We derive the Cramer-Rao lower bound for the wind estimation problem and show that the proposed estimator is very close to achieving theoretical minimum-variance performance. We also present simulations using on-sky data that show significant Strehl increases from using this controller in realistic atmospheric conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/JOSAA.28.001566 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!