In a strongly turbulent medium, the scintillation index of flat-topped Gaussian beams is derived and evaluated. In the formulation, unified solution of Rytov method is utilized. Our results correctly reduce to the existing strong turbulence scintillation index of the Gaussian beam, and naturally to spherical and plane wave scintillations. Another checkpoint of our result is the scintillation index of flat-topped Gaussian beams in weak turbulence. Regardless of the order of flatness, scintillations of flat-topped Gaussian beams in strong turbulence are found to be determined mainly by the small-scale effects. For large-sized beams in moderate and strongly turbulent medium, flatter beams exhibit smaller scintillations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/JOSAA.28.001540 | DOI Listing |
This study investigates the bidirectional transmission of a partially coherent flat-topped beam in a turbulent atmosphere and plasma. Analytical formulas for the intensity distribution and M factor are derived based on the optical transmission matrix, Collins formula, and second moment theory with Wigner distribution function. Numerical results show that the beam order and transverse spatial coherence width can be selected appropriately to mitigate turbulence and plasma induced evolution properties.
View Article and Find Full Text PDFWe experimentally extend the nonlinear Gaussian to flat-top beam shaping from one to two dimensions through a three-dimensional nonlinear photonic crystal. Employing a near-infrared femtosecond laser, we induce a modification inside lithium niobate to achieve a second-order nonlinear optical coefficient modulation in three dimensions. The flat-topped truncation of wavefront has been adjusted in a mutual perpendicular coordinate separately.
View Article and Find Full Text PDFSensors (Basel)
October 2023
National Key Laboratory of Scattering and Radiation, Beijing 100854, China.
Spectral calibration consists of the calibration of wavelengths and the measurement of the instrument's spectral response function (SRF). Unlike conventional slits, the absorbed aerosol sensors (AAS) are used as a slit homogenizer, in which the SRF is not a conventional Gaussian curve. To be more precise, the SRF is the convolution of the slit function of the spectrometer, the line spread function of the optical system, and the detector response function.
View Article and Find Full Text PDFSensors (Basel)
August 2023
State Key Laboratory of ASIC and System, Fudan University, Shanghai 201203, China.
Light detection and ranging (LiDAR) technology, a cutting-edge advancement in mobile applications, presents a myriad of compelling use cases, including enhancing low-light photography, capturing and sharing 3D images of fascinating objects, and elevating the overall augmented reality (AR) experience. However, its widespread adoption has been hindered by the prohibitive costs and substantial power consumption associated with its implementation in mobile devices. To surmount these obstacles, this paper proposes a low-power, low-cost, single-photon avalanche detector (SPAD)-based system-on-chip (SoC) which packages the microlens arrays (MLAs) and a lightweight RGB-guided sparse depth imaging completion neural network for 3D LiDAR imaging.
View Article and Find Full Text PDFBased on the coherence theory for non-stationary optical fields, we introduce a new class of partially coherent pulse sources with multi-cosine-Gaussian correlated Schell-model (MCGCSM) and derive the analytic expression for the temporally mutual coherence function (TMCF) of an MCGCSM pulse beam when it propagates through dispersive media. The temporally average intensity (TAI) and the temporal degree of coherence (TDOC) of the MCGCSM pulse beams spreading in dispersive media are investigated numerically, respectively. Our results show that over propagation distance, the evolution of pulse beams is from the primary single beam into multiple subpulses or form flat-topped TAI distributions by controlling source parameters.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!