A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sodium influx induced by external calcium chelation decreases human sperm motility. | LitMetric

Sodium influx induced by external calcium chelation decreases human sperm motility.

Hum Reprod

Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, DF México.

Published: October 2011

Background: Calcium removal from the medium promptly reduces human sperm motility and induces a Na(+)-dependent depolarization that is accompanied by an increase in intracellular sodium concentration ([Na(+)](i)) and a decrease in intracellular calcium concentration ([Ca(2+)](i)). Sodium loading activates a Na(+)/K(+)-ATPase.

Methods: Membrane potential (Vm) and [Ca(2+)](i) were simultaneously detected in human sperm populations with the fluorescent probes diSC(3)(5) and fura 2. [Na(+)](i) and was measured independently in a similar fashion using sodium-binding benzofuran isophthalate. Motility was determined in a CASA system, ATP was measured using the luciferin-luciferase assay, and cAMP was measured by radioimmunoassay.

Results: Human sperm motility reduction after calcium removal is related to either Na(+)-loading or Na(+)-dependent depolarization, because, under conditions that inhibit the calcium removal-induced Na(+)-dependent depolarization and [Na(+)](i) increase, sperm motility was unaffected. By clamping sperm Vm with valinomycin, we found that the motility reduction associated with the calcium removal was related to sodium loading, and not to membrane potential depolarization. Mibefradil, a calcium channel blocker, markedly inhibited the Na(+)-dependent depolarization and sodium loading, and also preserved sperm motility. In the absence of calcium, both ATP and cAMP concentrations were decreased by 40%. However ATP levels were unchanged when calcium removal was performed under conditions that inhibit the calcium removal-induced Na(+)-dependent depolarization and [Na(+)](i) increase.

Conclusions: Human sperm motility arrest induced by external calcium removal is mediated principally by sodium loading, which would stimulate the Na(+)/K(+)-ATPase and in turn deplete the ATP content.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3174032PMC
http://dx.doi.org/10.1093/humrep/der237DOI Listing

Publication Analysis

Top Keywords

sperm motility
24
human sperm
20
calcium removal
20
na+-dependent depolarization
20
sodium loading
16
calcium
11
induced external
8
external calcium
8
sperm
8
motility
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!