Afferent regulation of neurons in the brain stem auditory system.

J Neurobiol

Hearing Development Laboratories, University of Washington, Seattle 98195.

Published: January 1990

We have reviewed a series of experiments which begin to examine the cellular events underlying afferent regulation of neuronal structure. Our initial interest in such experiments stemmed from a desire to understand the cellular nature of experiential influences on brain development. While this remains a long-range goal, it's elusive nature has become increasingly apparent; how will we know when such a goal is achieved? On the other hand, it has become increasingly clear that by approaching this question as a subset of the larger problem of tissue interactions regulating nervous system structure and function, some progress is possible. In this respect, understanding afferent regulation is part and parcel of understanding "competition." Both exemplify the fact that we are dealing with a dynamic system, where changes in the balance of extracellular factors result in a cascade of events defining a new "steady state." Unfortunately, most of our methods are limited to taking "snap-shots" of a few parameters and attempting to reconstruct an epic. Our analyses of the postsynaptic events following cochlea removal have only scratched the surface. They are beginning to reveal myriad cellular processes that are dramatically altered by changing the balance of synaptic activity, or "synaptic drive," in a neuronal system. We have been continually struck by the rapidity of these postsynaptic changes when the manipulations are performed on immature animals. While the kinetics of metabolic and structural events we have studied do not yet match those of ionic events involved in information transmission, the two classes of intercellular communication are coming much closer. Some neuromodulators can alter synaptic currents for up to many seconds, and we have shown that altering afferent activity can cause changes in protein synthesis within a few minutes. The merging of these two classes of phenomena should come as no surprise since our studies and many others have definitively linked a variety of metabolic and structural events to changes in the synaptic drive between two neurons. On the other hand, this progress does highlight the need for increased attention to the short-term changes following manipulations of afferent activity. Hopefully such studies will lead to an understanding of the intracellular chain of events responsible for the regulation of neuronal form. A second area of interest has been the age restrictions on the events we have studied.(ABSTRACT TRUNCATED AT 400 WORDS)

Download full-text PDF

Source
http://dx.doi.org/10.1002/neu.480210112DOI Listing

Publication Analysis

Top Keywords

afferent regulation
12
events
8
regulation neuronal
8
changes manipulations
8
metabolic structural
8
structural events
8
afferent activity
8
afferent
5
changes
5
regulation neurons
4

Similar Publications

The vagus nerve is proposed to enable communication between the gut microbiome and the brain, but activity-based evidence is lacking. We find that mice reared germ-free exhibit decreased vagal tone relative to colonized controls, which is reversed via microbiota restoration. Perfusing antibiotics into the small intestines of conventional mice, but not germ-free mice, acutely decreases vagal activity which is restored upon re-perfusion with intestinal filtrates from conventional, but not germ-free, mice.

View Article and Find Full Text PDF

The unique architecture of the liver consists of hepatic lobules, dividing the hepatic features of metabolism into 2 distinct zones, namely the pericentral and periportal zones, the spatial characteristics of which are broadly defined as metabolic zonation. R-spondin3 (Rspo3), a bioactive protein promoting the Wnt signaling pathway, regulates metabolic features especially around hepatic central veins. However, the functional impact of hepatic metabolic zonation, regulated by the Rspo3/Wnt signaling pathway, on whole-body metabolism homeostasis remains poorly understood.

View Article and Find Full Text PDF

Loss of neuronal activity facilitates surface accumulation of p75NTR and cell death in avian cochlear nucleus.

Neurosci Res

January 2025

Department of Cell Physiology, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan. Electronic address:

Sensorineural hearing loss causes cell death in central auditory neurons, but molecular mechanisms of triggering this process are not fully understood. We report here that loss of afferent activity promotes cell death by facilitating proBDNF-p75NTR signals in cochlear nucleus of chicks around hatch. RNA-seq analyses revealed up-regulation of genes related to proBDNF-p75NTR-JNK signals as well as apoptosis at the nucleus within 24 h after unilateral cochlea deprivation.

View Article and Find Full Text PDF

Amblyopia, a highly prevalent loss of visual acuity, is classically thought to result from cortical plasticity. The dorsal lateral geniculate nucleus (dLGN) has long been held to act as a passive relay for visual information, but recent findings suggest a largely underestimated functional plasticity in the dLGN. However, the cellular mechanisms supporting this plasticity have not yet been explored.

View Article and Find Full Text PDF

Mu opioid receptors expressed in striatal D2 medium spiny neurons have divergent contributions to cocaine and morphine reward.

Neuroscience

January 2025

Interdisciplinary Neuroscience Program, The University of Texas at Austin, Austin, TX, USA; Waggoner Center for Alcohol & Addiction Research, The University of Texas at Austin, Austin, TX, USA; Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA; Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA. Electronic address:

While our understanding of the neurobiological mechanisms underlying cocaine and opiate reward has historically been dopamine-focused, evidence from genetic and pharmacological approaches indicates that µ-opioid receptors (MORs) in the striatum are important contributors. Within the striatum, MORs are expressed in both dopamine D1-receptor and D2-receptor expressing GABAergic medium spiny neurons (MSNs), as well as in interneurons and various afferents. Thus, it remains unclear how these distinct MOR populations regulate drug reward.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!