Background: KCNQ1 gene encodes the delayed rectifier K(+) channel in cardiac muscle, and its mutations cause long QT syndrome type 1 (LQT1). Especially exercise-related cardiac events predominate in LQT1. We previously reported that a KCNQ1 splicing mutation displays LQT1 phenotypes.
Methods And Results: We identified novel mutation at the third base of intron 7 (IVS7 +3A>G) in exercise-induced LQT1 patients. Minigene assay in COS7 cells and RT-PCR analysis of patients' lymphocytes demonstrated the presence of exon 7-deficient mRNA in IVS7 +3A>G, as well as c.1032G>A, but not in c.1022C>T. Real-time RT-PCR demonstrated that both IVS7 +3A>G and c.1032G>A carrier expressed significant amounts of exon-skipping mRNAs (18.8% and 44.8% of total KCNQ1 mRNA). Current recordings from Xenopus oocytes injected cRNA by simulating its ratios of exon skipping displayed a significant reduction in currents to 64.8 ± 4.5% for IVS7 +3A>G and to 41.4 ± 9.5% for c.1032G>A carrier, respectively, compared to the condition without splicing error. Computer simulation incorporating these quantitative results revealed the pronounced QT prolongation under beta-adrenergic stimulation in IVS7 +3A>G carrier model.
Conclusion: Here we report a novel splicing mutation IVS7 +3A>G, identified in a family with mild form LQT1 phenotypes, and examined functional outcome in comparison with three other variants around the exon 7-intron 7 junction. In addition to c.1032G>A mutation, IVS7 +3A>G generates exon-skipping mRNAs, and thereby causing LQT1 phenotype. The severity of clinical phenotypes appeared to differ between the two splicing-related mutations and to result from the amount of resultant mRNAs and their functional consequences.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbadis.2011.07.011 | DOI Listing |
Gene
November 2018
Faculty of Pharmaceutical Sciences, Tokushima University, Shomachi 1-78, Tokushima 770-8505, Japan; Graduate School of Pharmaceutical Sciences, Tokushima University, Shomachi 1-78, Tokushima 770-8505, Japan.
Cathepsin A (CTSA) is a multifunctional lysosomal enzyme, and its hereditary defect causes an autosomal recessive disorder called galactosialidosis. In a certain number of galactosialidosis patients, a base substitution from adenine to guanine is observed at the +3 position of the 7th intron (IVS7 +3a>g) of the CTSA gene. With this mutation, a splicing error occurs; and consequently mRNA lacking the 7th exon is produced.
View Article and Find Full Text PDFBiochim Biophys Acta
November 2011
Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Otsu, Japan.
Background: KCNQ1 gene encodes the delayed rectifier K(+) channel in cardiac muscle, and its mutations cause long QT syndrome type 1 (LQT1). Especially exercise-related cardiac events predominate in LQT1. We previously reported that a KCNQ1 splicing mutation displays LQT1 phenotypes.
View Article and Find Full Text PDFHum Mutat
May 2006
Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA.
Germline mutations in the human breast cancer susceptibility genes BRCA1 and BRCA2 account for the majority of hereditary breast and ovarian cancer. In spite of the large number of sequence variants identified in BRCA1 and BRCA2 mutation analyses, many of these genetic alterations are still classified as variants of unknown significance (VUS). In this study, we evaluated 12 BRCA1/2 intronic variants in order to differentiate their pathogenic or polymorphic effects on the mRNA splicing process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!