The spinocerebellar ataxias (SCAs) are dominantly inherited disorders that primarily affect coordination of motor function but also frequently involve other brain functions. The models described in this review address mechanisms of trinucleotide-repeat expansions, particularly those relating to polyglutamine expression in the mutant proteins. Modeling chronic late-onset human ataxias in mice is difficult because of their short life-span. While this potential hindrance has been partially overcome by using over-expression of the mutant gene, and/or worsening of the mutation by increasing the length of the trinucleotide repeat expansion, interpretation of results from such models and extrapolation to the human condition should be cautious. Nevertheless, genetically engineered murine models of these diseases have enhanced our understanding of the pathogenesis of many of these conditions. A common theme in many of the polyglutamine-repeat diseases is nuclear localization of mutant protein, with resultant effects on gene regulation. Conditional mutant models and transgenic knock-down therapy have demonstrated the potential for reversibility of disease when production of mutant protein is halted. Several other genetically engineered murine models of SCA also have begun to show utility in the identification and assessment of more classical drug-based therapeutic modalities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3227776 | PMC |
http://dx.doi.org/10.1016/j.brainresbull.2011.07.016 | DOI Listing |
CRISPR J
January 2025
Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.
Flax is an important crop used for oil and fiber production. Although genetic engineering has been possible in flax, it is not commonly used to produce cultivars. However, the use of genome editing technology, which can produce site-specific mutations without introducing foreign genes, may be a valuable tool for creating elite cultivars that can be easily cultivated.
View Article and Find Full Text PDFNucleosides Nucleotides Nucleic Acids
January 2025
Faculty of Agriculture and Allied Sciences, C.V. Raman Global University, Bhubaneswar, India.
The field of biomedical science has witnessed another milestone with the advent of RNA-based therapeutics. This review explores three major RNA molecules, namely: messenger RNA (mRNA), RNA interference technology (RNAi), and Antisense Oligonucleotide (ASO), and analyses U.S.
View Article and Find Full Text PDFAnal Chem
January 2025
State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
Simultaneous analysis of multiple phosphorylated metabolites (phosphorylated metabolome) in biological samples is vital to reveal their physiological and pathophysiological functions, which is extremely challenging due to their low abundance in some biological matrices, high hydrophilicity, and poor chromatographic behavior. Here, we developed a new method with ion-pair reversed-phase ultrahigh-performance liquid chromatography and mass spectrometry using BEH C18 columns modified with hybrid surface technology. This method demonstrated good performances for various phosphorylated metabolites, including phosphorylated sugars and amino acids, nucleotides, NAD-based cofactors, and acyl-CoAs in a single run using standard LC systems.
View Article and Find Full Text PDFMol Genet Genomic Med
January 2025
Group for Rare Disease Research and Therapeutics Development, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Republic of Serbia.
Introduction: Chronic endoplasmic reticulum (ER) stress and increased apoptosis are involved in the pathogenesis of glycogen storage disease Ib (GSD Ib), whereas small molecule phenylbutyrate (4-PBA) showed the capability of reducing ER stress-induced apoptosis. The objective was to generate an in vitro system in which capability of small molecules (SMs) to influence ER stress and apoptosis could be screened at the expression level.
Methods: G6PT-deficient FlpInHEK293 cell line was created and validated using the CRISPR/Cas9 knockout method.
Biological containment is a critical safeguard for genetically engineered microbes prior to their environmental release to prevent proliferation in unintended regions. However, few biocontainment strategies can support the longer-term microbial survival that may be desired in a target environment without repeated human intervention. Here, we introduce the concept of an orthogonal obligate commensalism for the autonomous creation of environments that are permissive for survival of a biocontained microbe.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!