Intermolecular interactions and electrostatic properties of the β-hydroquinone apohost: implications for supramolecular chemistry.

J Phys Chem A

Center for Materials Crystallography, Department of Chemistry and Interdisciplinary Nanoscience Center, Aarhus University, Aarhus C, Denmark.

Published: November 2011

The crystal structure of the β-polymorph of hydroquinone (β-HQ), the apohost of a large family of clathrates, is reported with a specific focus on intermolecular interactions and the electrostatic nature of its cavity. Hirshfeld surface analysis reveals subtle close contacts between two interconnecting HQ networks, and the local packing and related close contacts were examined by breakdown of the fingerprint plot. An experimental multipole model containing anisotropic thermal parameters for hydrogen atoms has been successfully refined against 15(2) K single microcrystal synchrotron X-ray diffraction data. The experimental electron density model has been compared with a theoretical electron density calculated with the molecule embedded in its own crystal field. Hirshfeld charges, interaction energies and the electrostatic potential calculated for both models are qualitatively in good agreement, but small differences in the electrostatic potential persist due to charge transfer from all hydrogen atoms to the oxygen atoms in the theoretical model. The electrostatic potential in the center of the cavity is positive, very shallow and highly symmetric, suggesting that the inclusion of polar molecules in the void will involve a balance between opposing effects. The electric field is by symmetry zero in the center of the cavity, increasing to a value of 0.0185 e/Å(2) (0.27 V/Å) 1 Å along the 3-fold axis and 0.0105 e/Å(2) (0.15 V/Å) 1 Å along the perpendicular direction. While these values are substantial in a macroscopic context, they are quite small for a molecular cavity and are not expected to strongly polarize a guest molecule.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp2041789DOI Listing

Publication Analysis

Top Keywords

electrostatic potential
12
intermolecular interactions
8
interactions electrostatic
8
close contacts
8
hydrogen atoms
8
electron density
8
center cavity
8
electrostatic
5
electrostatic properties
4
properties β-hydroquinone
4

Similar Publications

Unlocking Biochar's Potential: Innovative Strategies for Sustainable Remediation of Heavy Metal Stress in Tobacco Plants.

Scientifica (Cairo)

January 2025

Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.

Tobacco, being a globally cultivated crop, holds significant social and economic importance. Tobacco plants are susceptible to the adverse effects of heavy metals (HMs), particularly cadmium (Cd), which hinders root development, disrupts water balance, and impedes nutrient absorption. Higher concentrations of HMs, especially Cd, naturally accumulate in tobacco leaves due to complex interactions within the plant-soil continuum.

View Article and Find Full Text PDF

Antibiotic resistance is recognized as one of the top ten global public health threats, posing a significant challenge to human health. The stereochemistry of chiral molecules, alongside their specific interactions with biological targets, provides essential insights for the development of novel antibacterial agents, This study investigated the antibacterial activity of 32 previously synthesized 14-position chiral matrine derivatives. Among these derivatives, compound Q4 exhibited the strongest activity against Propionibacterium acnes, with a minimum inhibitory concentration (MIC) of 0.

View Article and Find Full Text PDF

Rare Earth Selectivity and Electric Potentials at Mica Interfaces.

ACS Appl Mater Interfaces

January 2025

Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.

Controlling materials' composition and structure to selectively adsorb rare earth elements (REE) is critical for better separations. Understanding how local electric potentials affect REE adsorption and how they can be modified via chemical substitution is of fundamental importance. We present calculated mean inner potentials for muscovite and phlogopite micas in excellent agreement with measured values of +10.

View Article and Find Full Text PDF

Integrating machine learning potentials (MLPs) with quantum mechanical/molecular mechanical (QM/MM) free energy simulations has emerged as a powerful approach for studying enzymatic catalysis. However, its practical application has been hindered by the time-consuming process of generating the necessary training, validation, and test data for MLP models through QM/MM simulations. Furthermore, the entire process needs to be repeated for each specific enzyme system and reaction.

View Article and Find Full Text PDF

Flexible micromachined ultrasound transducers (MUTs) for biomedical applications.

Microsyst Nanoeng

January 2025

Department of Electrical Engineering (ESAT-MNS), KU Leuven, Belgium.

The use of bulk piezoelectric transducer arrays in medical imaging is a well-established technology that operates based on thickness mode piezoelectric vibration. Meanwhile, advancements in fabrication techniques have led to the emergence of micromachined alternatives, namely, piezoelectric micromachined ultrasound transducer (PMUT) and capacitive micromachined ultrasound transducer (CMUT). These devices operate in flexural mode using piezoelectric thin films and electrostatic forces, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!