Cation exchange reactions in colloidal branched nanocrystals.

ACS Nano

Istituto Italiano di Tecnologia, Via Morego 30, 16130 Genova, Italy.

Published: September 2011

Octapod-shaped colloidal nanocrystals composed of a central "core" region of cubic sphalerite CdSe and pods of hexagonal wurtzite CdS are subject to a cation exchange reaction in which Cd(2+) ions are progressively exchanged by Cu(+) ions. The reaction starts from the tip regions of the CdS pods and proceeds toward the center of the nanocrystals. It preserves both the shape and the anionic lattices of the heterostructures. During the exchange, the hexagonal wurtzite CdS pods are converted gradually into pods of hexagonal Cu(2)S chalcocite. Therefore, the partial cation exchange reactions lead to the formation of a ternary nanostructure, consisting of an octapod in which the central core is still CdSe, while the pods have a segmented CdS/Cu(2)S composition. When the cation exchange reaches the core, the cubic sphalerite CdSe core is converted into a core of cubic Cu(2-x)Se berzelianite phase. Therefore fully exchanged octapods are composed of a core of Cu(2-x)Se and eight pods of Cu(2)S. All these structures are stable, and the epitaxial interfaces between the various domains are characterized by low lattice mismatch. The Cu(2-x)Se(core)/Cu(2)S(pods) octapod represents another example of a nanostructure in which branching is achieved by proper organization of cubic and hexagonal domains in a single nanocrystal.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn201988wDOI Listing

Publication Analysis

Top Keywords

cation exchange
16
exchange reactions
8
cubic sphalerite
8
sphalerite cdse
8
cdse pods
8
pods hexagonal
8
hexagonal wurtzite
8
wurtzite cds
8
cds pods
8
core cubic
8

Similar Publications

One method of achieving spatially specific, multi-component nanoheterostructures is to combine multiple forms of post-synthetic modification. Applying cation or anion exchange to CuS nanorods creates complex nanoheterostructures. Combining such anion and cation exchanges generates a system which uncovers the interplay between these two processes and understands the cooperativity between postsynthetic modifications more broadly.

View Article and Find Full Text PDF

Geographical origins of Angelica sinensis using functional compounds and multielement with machine learning-based fusion approaches.

Food Chem

January 2025

State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China; Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100700, PR China. Electronic address:

Ensuring food traceability is essential for maintaining safety and authenticity. Angelica sinensis (Oliv.) Diels (AS), a medicinal food prized for its rich nutritional value and tonic effects, is frequently vulnerable to geographic origin fraud.

View Article and Find Full Text PDF

Organic-inorganic hybrid materials are explored for application as solid electrolytes for lithium-ion batteries. The material consists of a porous silica network, of which the pores are infiltrated by poly(ethylene oxide) and lithium perchlorate. The synthesis involves two steps: First, the inorganic backbone is created by the acid-catalyzed sol-gel synthesis of tetraethyl orthosilicate to ensure continuity of the backbone in three dimensions.

View Article and Find Full Text PDF

Water contamination by polycyclic aromatic hydrocarbons (PAHs), particularly naphthalene, is a serious environmental concern due to its persistence, bioaccumulation, and toxicity. This study explores the adsorption behavior of naphthalene using organobentonite (OBt), synthesized by intercalating cetyltrimethylammonium bromide (CTAB) into sodium bentonite (SBt) with varying cation exchange capacities (CECs). The effectiveness of OBt in naphthalene adsorption was evaluated by analyzing key parameters, including CEC, contaminant concentration, and contact time.

View Article and Find Full Text PDF

Characterization of 1,8-diazabicyclo(5.4.0)undec-7-ene-hydroxyl-based ionic liquid for CO capture.

R Soc Open Sci

January 2025

Fundamental and Applied Sciences Department, Centre of Ionic Liquids, Universiti Teknologi PETRONAS, Seri Iskandar, Perak Darul Ridzuan 32610, Malaysia.

Six 1,8-diazabicyclo(5.4.0)undec-7-ene-based ionic liquids (ILs) linked with ethyl or propyl hydroxyl cations, coupled with thiocyanate, dicyanamide and bistriflimide anions, were synthesized through a two-step reaction: quaternization and ion exchange.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!